scholarly journals AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation

2017 ◽  
Vol 114 (50) ◽  
pp. E10697-E10706 ◽  
Author(s):  
Rafael Mattera ◽  
Sang Yoon Park ◽  
Raffaella De Pace ◽  
Carlos M. Guardia ◽  
Juan S. Bonifacino

AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4–deficient HSP.

2020 ◽  
Vol 48 (5) ◽  
pp. 1877-1888
Author(s):  
Rafael Mattera ◽  
Raffaella De Pace ◽  
Juan S. Bonifacino

Heterotetrameric adaptor protein (AP) complexes play key roles in protein sorting and transport vesicle formation in the endomembrane system of eukaryotic cells. One of these complexes, AP-4, was identified over 20 years ago but, up until recently, its function remained unclear. AP-4 associates with the trans-Golgi network (TGN) through interaction with small GTPases of the ARF family and recognizes transmembrane proteins (i.e. cargos) having specific sorting signals in their cytosolic domains. Recent studies identified accessory proteins (tepsin, RUSC2 and the FHF complex) that co-operate with AP-4, and cargos (amyloid precursor protein, ATG9A and SERINC3/5) that are exported from the TGN in an AP-4-dependent manner. Defective export of ATG9A from the TGN in AP-4-deficient cells was shown to reduce ATG9A delivery to pre-autophagosomal structures, impairing autophagosome formation and/or maturation. In addition, mutations in AP-4-subunit genes were found to cause neurological dysfunction in mice and a form of complicated hereditary spastic paraplegia referred to as ‘AP-4-deficiency syndrome’ in humans. These findings demonstrated that mammalian AP-4 is required for the development and function of the central nervous system, possibly through its role in the sorting of ATG9A for the maintenance of autophagic homeostasis. In this article, we review the properties and functions of AP-4, and discuss how they might explain the clinical features of AP-4 deficiency.


2020 ◽  
Vol 29 (2) ◽  
pp. 320-334 ◽  
Author(s):  
Robert Behne ◽  
Julian Teinert ◽  
Miriam Wimmer ◽  
Angelica D’Amore ◽  
Alexandra K Davies ◽  
...  

Abstract Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP): SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3–5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.


2011 ◽  
Vol 88 (6) ◽  
pp. 788-795 ◽  
Author(s):  
Rami Abou Jamra ◽  
Orianne Philippe ◽  
Annick Raas-Rothschild ◽  
Sebastian H. Eck ◽  
Elisabeth Graf ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yutaro Shimizu ◽  
Junpei Takagi ◽  
Emi Ito ◽  
Yoko Ito ◽  
Kazuo Ebine ◽  
...  

AbstractThe trans-Golgi network (TGN) has been known as a key platform to sort and transport proteins to their final destinations in post-Golgi membrane trafficking. However, how the TGN sorts proteins with different destinies still remains elusive. Here, we examined 3D localization and 4D dynamics of TGN-localized proteins of Arabidopsis thaliana that are involved in either secretory or vacuolar trafficking from the TGN, by a multicolor high-speed and high-resolution spinning-disk confocal microscopy approach that we developed. We demonstrate that TGN-localized proteins exhibit spatially and temporally distinct distribution. VAMP721 (R-SNARE), AP (adaptor protein complex)−1, and clathrin which are involved in secretory trafficking compose an exclusive subregion, whereas VAMP727 (R-SNARE) and AP-4 involved in vacuolar trafficking compose another subregion on the same TGN. Based on these findings, we propose that the single TGN has at least two subregions, or “zones”, responsible for distinct cargo sorting: the secretory-trafficking zone and the vacuolar-trafficking zone.


2016 ◽  
Vol 25 (11) ◽  
pp. 2158-2167 ◽  
Author(s):  
Dragana J. Josifova ◽  
Glen R. Monroe ◽  
Federico Tessadori ◽  
Esther de Graaff ◽  
Bert van der Zwaag ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
C Keith Cassidy ◽  
Benjamin A Himes ◽  
Frances J Alvarez ◽  
Jun Ma ◽  
Gongpu Zhao ◽  
...  

Chemotactic responses in bacteria require large, highly ordered arrays of sensory proteins to mediate the signal transduction that ultimately controls cell motility. A mechanistic understanding of the molecular events underlying signaling, however, has been hampered by the lack of a high-resolution structural description of the extended array. Here, we report a novel reconstitution of the array, involving the receptor signaling domain, histidine kinase CheA, and adaptor protein CheW, as well as a density map of the core-signaling unit at 11.3 Å resolution, obtained by cryo-electron tomography and sub-tomogram averaging. Extracting key structural constraints from our density map, we computationally construct and refine an atomic model of the core array structure, exposing novel interfaces between the component proteins. Using all-atom molecular dynamics simulations, we further reveal a distinctive conformational change in CheA. Mutagenesis and chemical cross-linking experiments confirm the importance of the conformational dynamics of CheA for chemotactic function.


1998 ◽  
Vol 9 (8) ◽  
pp. 2217-2229 ◽  
Author(s):  
Lisa A. Hannan ◽  
Sherri L. Newmyer ◽  
Sandra L. Schmid

Clathrin-coated vesicles (CCV) mediate protein sorting and vesicular trafficking from the plasma membrane and the trans-Golgi network. Before delivery of the vesicle contents to the target organelles, the coat components, clathrin and adaptor protein complexes (APs), must be released. Previous work has established that hsc70/the uncoating ATPase mediates clathrin release in vitro without the release of APs. AP release has not been reconstituted in vitro, and nothing is known about the requirements for this reaction. We report a novel quantitative assay for the ATP- and cytosol- dependent release of APs from CCV. As expected, hsc70 is not sufficient for AP release; however, immunodepletion and reconstitution experiments establish that it is necessary. Interestingly, complete clathrin release is not a prerequisite for AP release, suggesting that hsc70 plays a dual role in recycling the constituents of the clathrin coat. This assay provides a functional basis for identification of the additional cytosolic factor(s) required for AP release.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 400 ◽  
Author(s):  
Roberta Peres da Silva ◽  
Sharon de Toledo Martins ◽  
Juliana Rizzo ◽  
Flavia C. G. dos Reis ◽  
Luna S. Joffe ◽  
...  

Golgi reassembly and stacking protein (GRASP) is required for polysaccharide secretion and virulence in Cryptococcus neoformans. In fungal species, extracellular vesicles (EVs) participate in the export of polysaccharides, proteins and RNA. In the present work, we investigated if EV-mediated RNA export is functionally connected with GRASP in C. neoformans using a graspΔ mutant. Since GRASP-mediated unconventional secretion involves autophagosome formation in yeast, we included the atg7Δ mutant with defective autophagic mechanisms in our analysis. All fungal strains exported EVs but deletion of GRASP or ATG7 profoundly affected vesicular dimensions. The mRNA content of the graspΔ EVs differed substantially from that of the other two strains. The transcripts associated to the endoplasmic reticulum were highly abundant transcripts in graspΔ EVs. Among non-coding RNAs (ncRNAs), tRNA fragments were the most abundant in both mutant EVs but graspΔ EVs alone concentrated 22 exclusive sequences. In general, our results showed that the EV RNA content from atg7Δ and WT were more related than the RNA content of graspΔ, suggesting that GRASP, but not the autophagy regulator Atg7, is involved in the EV export of RNA. This is a previously unknown function for a key regulator of unconventional secretion in eukaryotic cells.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Zhongyi Lu ◽  
Ting Fu ◽  
Tianyi Li ◽  
Yang Liu ◽  
Siyu Zhang ◽  
...  

ABSTRACT The emergence of the endomembrane system is a key step in the evolution of cellular complexity during eukaryogenesis. The endosomal sorting complex required for transport (ESCRT) machinery is essential and required for the endomembrane system functions in eukaryotic cells. Recently, genes encoding eukaryote-like ESCRT protein components have been identified in the genomes of Asgard archaea, a newly proposed archaeal superphylum that is thought to include the closest extant prokaryotic relatives of eukaryotes. However, structural and functional features of Asgard ESCRT remain uncharacterized. Here, we show that Vps4, Vps2/24/46, and Vps20/32/60, the core functional components of the Asgard ESCRT, coevolved eukaryote-like structural and functional features. Phylogenetic analysis shows that Asgard Vps4, Vps2/24/46, and Vps20/32/60 are closely related to their eukaryotic counterparts. Molecular dynamics simulation and biochemical assays indicate that Asgard Vps4 contains a eukaryote-like microtubule-interacting and transport (MIT) domain that binds the distinct type 1 MIT-interacting motif and type 2 MIT-interacting motif in Vps2/24/46 and Vps20/32/60, respectively. The Asgard Vps4 partly, but much more efficiently than homologs from other archaea, complements the vps4 null mutant of Saccharomyces cerevisiae, further supporting the functional similarity between the membrane remodeling machineries of Asgard archaea and eukaryotes. Thus, this work provides evidence that the ESCRT complexes from Asgard archaea and eukaryotes are evolutionarily related and functionally similar. Thus, despite the apparent absence of endomembranes in Asgard archaea, the eukaryotic ESCRT seems to have been directly inherited from an Asgard ancestor, to become a key component of the emerging endomembrane system. IMPORTANCE The discovery of Asgard archaea has changed the existing ideas on the origins of eukaryotes. Researchers propose that eukaryotic cells evolved from Asgard archaea. This hypothesis partly stems from the presence of multiple eukaryotic signature proteins in Asgard archaea, including homologs of ESCRT proteins that are essential components of the endomembrane system in eukaryotes. However, structural and functional features of Asgard ESCRT remain unknown. Our study provides evidence that Asgard ESCRT is functionally comparable to the eukaryotic counterparts, suggesting that despite the apparent absence of endomembranes in archaea, eukaryotic ESCRT was inherited from an Asgard archaeal ancestor, alongside the emergence of endomembrane system during eukaryogenesis.


Brain ◽  
2020 ◽  
Author(s):  
Darius Ebrahimi-Fakhari ◽  
Julian Teinert ◽  
Robert Behne ◽  
Miriam Wimmer ◽  
Angelica D'Amore ◽  
...  

Abstract Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0–49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2–5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1–46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an ‘AP-4 deficiency syndrome’. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.


Sign in / Sign up

Export Citation Format

Share Document