scholarly journals Color opponency with a single kind of bistable opsin in the zebrafish pineal organ

2018 ◽  
Vol 115 (44) ◽  
pp. 11310-11315 ◽  
Author(s):  
Seiji Wada ◽  
Baoguo Shen ◽  
Emi Kawano-Yamashita ◽  
Takashi Nagata ◽  
Masahiko Hibi ◽  
...  

Lower vertebrate pineal organs discriminate UV and visible light. Such color discrimination is typically considered to arise from antagonism between two or more spectrally distinct opsins, as, e.g., human cone-based color vision relies on antagonistic relationships between signals produced by red-, green-, and blue-cone opsins. Photosensitive pineal organs contain a bistable opsin (parapinopsin) that forms a signaling-active photoproduct upon UV exposure that may itself be returned to the signaling-inactive “dark” state by longer-wavelength light. Here we show the spectrally distinct parapinopsin states (with antagonistic impacts on signaling) allow this opsin alone to provide the color sensitivity of this organ. By using calcium imaging, we show that single zebrafish pineal photoreceptors held under a background light show responses of opposite signs to UV and visible light. Both such responses are deficient in zebrafish lacking parapinopsin. Expressing a UV-sensitive cone opsin in place of parapinopsin recovers UV responses but not color opponency. Changes in the spectral composition of white light toward enhanced UV or visible wavelengths respectively increased vs. decreased calcium signal in parapinopsin-sufficient but not parapinopsin-deficient photoreceptors. These data reveal color opponency from a single kind of bistable opsin establishing an equilibrium-like mixture of the two states with different signaling abilities whose fractional concentrations are defined by the spectral composition of incident light. As vertebrate visual color opsins evolved from a bistable opsin, these findings suggest that color opponency involving a single kind of bistable opsin might have been a prototype of vertebrate color opponency.

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Seiji Wada ◽  
Emi Kawano-Yamashita ◽  
Tomohiro Sugihara ◽  
Satoshi Tamotsu ◽  
Mitsumasa Koyanagi ◽  
...  

Abstract Background Pineal-related organs in cyclostomes, teleosts, amphibians, and reptiles exhibit color opponency, generating antagonistic neural responses to different wavelengths of light and thereby sensory information about its “color”. Our previous studies suggested that in zebrafish and iguana pineal-related organs, a single photoreceptor cell expressing both UV-sensitive parapinopsin and green-sensitive parietopsin generates color opponency in a “one-cell system.” However, it remains unknown to what degree these opsins and the single cell-based mechanism in the pineal color opponency are conserved throughout non-mammalian vertebrates. Results We found that in the lamprey pineal organ, the two opsins are conserved but that, in contrast to the situation in other vertebrate pineal-related organs, they are expressed in separate photoreceptor cells. Intracellular electrophysiological recordings demonstrated that the parietopsin-expressing photoreceptor cells with Go-type G protein evoke a depolarizing response to visible light. Additionally, spectroscopic analyses revealed that parietopsin with 11-cis 3-dehydroretinal has an absorption maximum at ~570 nm, which is in approximate agreement with the wavelength (~560 nm) that produces the maximum rate of neural firing in pineal ganglion cells exposed to visible light. The vesicular glutamate transporter is localized at both the parietopsin- and parapinopsin-expressing photoreceptor terminals, suggesting that both types of photoreceptor cells use glutamate as a transmitter. Retrograde tracing of the pineal ganglion cells revealed that the terminal of the parietopsin-expressing cells is located close enough to form a neural connection with the ganglion cells, which is similar to our previous observation for the parapinopsin-expressing photoreceptor cells and the ganglion cells. In sum, our observations point to a “two-cell system” in which parietopsin and parapinopsin, expressed separately in two different types of photoreceptor cells,  contribute to the generation of color opponency in the pineal ganglion cells. Conclusion Our results indicate that the jawless vertebrate, lamprey, employs a system for color opponency that differes from that described previously in jawed vertebrates. From a physiological viewpoint, we propose an evolutionary insight, the emergence of pineal “one-cell system” from the ancestral “multiple (two)-cell system,” showing the opposite evolutionary direction to that of the ocular color opponency.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Baoguo Shen ◽  
Seiji Wada ◽  
Haruka Nishioka ◽  
Takashi Nagata ◽  
Emi Kawano-Yamashita ◽  
...  

AbstractIn the pineal organ of zebrafish larvae, the bistable opsin parapinopsin alone generates color opponency between UV and visible light. Our previous study suggested that dark inactivation of the parapinopsin photoproduct, which activates G-proteins, is important for the regulation of the amount of the photoproduct. In turn, the photoproduct is responsible for visible light sensitivity in color opponency. Here, we found that an opsin kinase or a G-protein-coupled receptor kinase (GRK) is involved in inactivation of the active photoproduct of parapinopsin in the pineal photoreceptor cells of zebrafish larvae. We investigated inactivation of the photoproduct in the parapinopsin cells of various knockdown larvae by measuring the light responses of the cells using calcium imaging. We found that GRK7a knockdown slowed recovery of the response of parapinopsin photoreceptor cells, whereas GRK1b knockdown or GRK7b knockdown did not have a remarkable effect, suggesting that GRK7a, a cone-type GRK, is mainly responsible for inactivation of the parapinopsin photoproduct in zebrafish larvae. We also observed a similar knockdown effect on the response of the parapinopsin photoreceptor cells of mutant larvae expressing the opsin SWS1, a UV-sensitive cone opsin, instead of parapinopsin, suggesting that the parapinopsin photoproduct was inactivated in a way similar to that described for cone opsins. We confirmed the immunohistochemical distribution of GRK7a in parapinopsin photoreceptor cells by comparing the immunoreactivity to GRK7 in GRK7a-knockdown and control larvae. These findings suggest that in pineal photoreceptor cells, the cone opsin kinase GRK7a contributes greatly to the inactivation of parapinopsin, which underlies pineal color opponency.


2015 ◽  
Vol 3 (31) ◽  
pp. 8074-8079 ◽  
Author(s):  
Changyong Lan ◽  
Chun Li ◽  
Yi Yin ◽  
Huayang Guo ◽  
Shuai Wang

Single-crystalline GeS nanoribbons were synthesized by chemical vapor deposition for the first time. The nanoribbon photodetectors respond to the entire visible incident light with a response edge at around 750 nm and a high responsivity, indicating their promising application for high performance broadband visible-light photo-detection.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 699 ◽  
Author(s):  
Yaoyao Liang ◽  
Zhongchao Wei ◽  
Jianping Guo ◽  
Faqiang Wang ◽  
Hongyun Meng ◽  
...  

A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Here we demonstrate ultrathin highly efficient crystalline titanium dioxide metalenses at blue, green, and red wavelengths (λ0 = 453 nm, 532 nm, and 633 nm, respectively) based on symmetric slab waveguide theory. These metalenses are less than 488 nm-thick and capable of focusing incident light into very symmetric diffraction-limited spots with strehl ratio and efficiency as high as 0.96 and 83%, respectively. Further quantitative characterizations about metalenses’ peak focusing intensities and focal spot sizes show good agreement with theoretical calculation. Besides, the metalenses suffer only about 10% chromatic deviation from the ideal spots in visible spectrum. In contrast with Pancharatnam–Berry phase mechanism, which limit their incident light at circular polarization, the proposed method enables metalenses polarization-insensitive to incident light.


2008 ◽  
Vol 64 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Masatomo Yashima ◽  
Kiyonori Ogisu ◽  
Kazunari Domen

We report the crystal structure and electron density of samarium titanium oxysulfide, Sm2Ti2S2O4.9, photocatalyst obtained through the Rietveld analysis, maximum-entropy method (MEM) and MEM-based pattern fitting of the high-resolution synchrotron powder diffraction data taken at 298.7 K. The Sm2Ti2S2O4.9 has a tetragonal structure with the space group I4/mmm. Refined occupancy factors at the `equatorial' O1 and `apical' O2 sites were 0.994 (3) and 0.944 (12), respectively, which strongly suggest oxygen deficiency at the O2 site. Electron-density analyses based on the synchrotron diffraction data of Sm2Ti2S2O4.9 in combination with density-functional theory (DFT) calculations of stoichiometric Sm2Ti2S2O5 reveal covalent bonds between Ti and O atoms, while the Sm and S atoms are more ionic. The presence of S 3p and O 2p orbitals results in increased dispersion of the valence band, raising the top of the valence band and making the material active at visible wavelengths. The present DFT calculations of stoichiometric Sm2Ti2S2O5 indicate the possibility of overall splitting of water, although Sm2Ti2S2O4.9 works as a visible-light-responsive photocatalyst in aqueous solutions only in the presence of sacrificial electron donors or acceptors. The oxygen deficiency and cocatalyst seem to be factors affecting the catalytic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Stasko ◽  
Jacob F. Kocher ◽  
Abigail Annas ◽  
Ibrahim Henson ◽  
Theresa S. Seitz ◽  
...  

AbstractThe delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


2005 ◽  
Vol 876 ◽  
Author(s):  
Sesha S. Srinivasan ◽  
Jeremy Wade ◽  
Elias K. Stefanakos

AbstractThe wide bandgap semiconductor TiO2 has become the dominant UV-activated photocatalyst in the field of air and water detoxification because of its high stability, low cost, high oxidation potential and chemically favorable properties. The demand for visible-light activated photocatalytic systems is increasing rapidly; however, currently, the efficiency and availability of photocatalysts that can be activated effectively by the solar spectrum and particularly indoor lighting is severely limited. In this paper, a new coprecipitation/hydrolysis synthesis route is used to create a TiO2-ZnFe2O4 nanocomposite that is directed towards extending the photoresponse of TiO2 from UV to visible wavelengths (>400nm). The effect of TiO2's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe2O4 narrow bandgap semiconductor is evaluated. The transformation's dependence on pH, calcination temperature, particle size, and ZnFe2O4 concentration has been analyzed using XRD, SEM, and UV-Visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe2O4 nanocomposite are outlined. The visible-light activated photocatalytic activity of the TiO2-ZnFe2O4 nanocomposites have been compared to an Aldrich TiO2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.


2021 ◽  
Author(s):  
Fengxiang Chen ◽  
Ya Huang ◽  
Run Li ◽  
Shiliang Zhang ◽  
Baoshun Wang ◽  
...  

Structural colors, generated by the interaction of interference, diffraction, and scattering between incident light and periodic nanostructured surfaces with features of the same scale with incident visible light wavelengths, have...


1953 ◽  
Vol 31 (7) ◽  
pp. 1170-1181 ◽  
Author(s):  
O. Theimer ◽  
E. Lell

The scattering power S(λ) = Is/Id (Is, Id are the intensities of the scattered and the incident light) for visible light is investigated experimentally for ordinary glass, optical glass, water, and air. It is found that S(λ) for glass shows pronounced deviations from Rayleigh's 1/λ4 law, e.g., a relative maximum of S(λ) for λ = 5200 Å in the case of ordinary glass. A theory for the Rayleigh scattering of condensed matter is developed and compared with the ideas brought forward by Fürth and Humphreys-Owen in 1951. It is shown that the maxima of S(λ) observed by these authors and in the present work can be equally well derived from localized lattice imperfections or from the mosaic blocks considered by Fürth.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1579 ◽  
Author(s):  
Victor B. Ivanov ◽  
Vladimir V. Bitt ◽  
Elena V. Solina ◽  
Alexander V. Samoryadov

The effect of the light spectral composition and temperature on the change of color characteristics and reflection spectra during the irradiation of polyphenylene sulfide reinforced by short glass fibers in the SUNTEST apparatus was analyzed. The scales of reversible color change upon successive exposure to total radiation corresponding to the sunlight spectrum and to visible light wereevaluated and the possible mechanisms for the observed effects are discussed. The features of the color change upon visible light irradiation of previously thermally aged samples wereconsidered. Possible causes for deviation from the Arrhenius law during thermal aging of the composite are discussed. It wasdemonstrated that even with a significant change in color, the physicomechanical and electrotechnical characteristics of the composite only changedslightly or remained virtually at the same high level.


Sign in / Sign up

Export Citation Format

Share Document