scholarly journals Promises and perils of gene drives: Navigating the communication of complex, post-normal science

2019 ◽  
Vol 116 (16) ◽  
pp. 7692-7697 ◽  
Author(s):  
Dominique Brossard ◽  
Pam Belluck ◽  
Fred Gould ◽  
Christopher D. Wirz

In November of 2017, an interdisciplinary panel discussed the complexities of gene drive applications as part of the third Sackler Colloquium on “The Science of Science Communication.” The panel brought together a social scientist, life scientist, and journalist to discuss the issue from each of their unique perspectives. This paper builds on the ideas and conversations from the session to provide a more nuanced discussion about the context surrounding responsible communication and decision-making for cases of post-normal science. Deciding to use gene drives to control and suppress pests will involve more than a technical assessment of the risks involved, and responsible decision-making regarding their use will require concerted efforts from multiple actors. We provide a review of gene drives and their potential applications, as well as the role of journalists in communicating the extent of uncertainties around specific projects. We also discuss the roles of public opinion and online environments in public engagement with scientific processes. We conclude with specific recommendations about how to address current challenges and foster more effective communication and decision-making for complex, post-normal issues, such as gene drives.

Author(s):  
Jacques Reis ◽  
Peter S. Spencer

Abstract Decision-making in environmental health policy is a complex procedure even in well-known conditions. Thus, in the case of uncertainty, decision-making becomes a hurdle race. We address scientific uncertainty, methods to reduce uncertainty, biomedical doubt and science communication, and the role of stakeholders, activists, lobbies and media that together influence policy decisions. We also consider the major responsibility and role of the medico-scientific community in this process. This community can and should teach the principle of scientific uncertainty to all stakeholders, advise policy-makers and underline the ethical issues, considering that our brains are not only the deposit of our humanity but also the route to environmental health and societal harmony.


2018 ◽  
Vol 46 (5) ◽  
pp. 1203-1212 ◽  
Author(s):  
Philip T. Leftwich ◽  
Matthew P. Edgington ◽  
Tim Harvey-Samuel ◽  
Leonela Z. Carabajal Paladino ◽  
Victoria C. Norman ◽  
...  

Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia. Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009278
Author(s):  
Gili Greenbaum ◽  
Marcus W. Feldman ◽  
Noah A. Rosenberg ◽  
Jaehee Kim

The prospect of utilizing CRISPR-based gene-drive technology for controlling populations has generated much excitement. However, the potential for spillovers of gene-drive alleles from the target population to non-target populations has raised concerns. Here, using mathematical models, we investigate the possibility of limiting spillovers to non-target populations by designing differential-targeting gene drives, in which the expected equilibrium gene-drive allele frequencies are high in the target population but low in the non-target population. We find that achieving differential targeting is possible with certain configurations of gene-drive parameters, but, in most cases, only under relatively low migration rates between populations. Under high migration, differential targeting is possible only in a narrow region of the parameter space. Because fixation of the gene drive in the non-target population could severely disrupt ecosystems, we outline possible ways to avoid this outcome. We apply our model to two potential applications of gene drives—field trials for malaria-vector gene drives and control of invasive species on islands. We discuss theoretical predictions of key requirements for differential targeting and their practical implications.


2020 ◽  
Author(s):  
N. Metchanun ◽  
C. Borgemeister ◽  
J. von Braun ◽  
M. Nikolov ◽  
P. Selvaraj ◽  
...  

AbstractThe tremendous burden of malaria has led to renewed efforts on malaria elimination and the development of novel tools for application where existing tools fall short. Gene drive mosquitoes, where transgenes and their associated phenotypes are efficiently propagated to future generations, are under development to suppress vector populations or render vectors incapable of malaria transmission. However, the role of gene drives in an integrated elimination strategy is underexplored. Using a spatially explicit agent-based model of malaria transmission in the Democratic Republic of the Congo, we describe the impact of integrating a population suppression driving-Y gene drive into malaria elimination strategies. We find that as long as the driving-Y construct is extremely effective, releases of gene drive mosquitoes can eliminate malaria, and we identify a cost ceiling for gene drive to be cost-effective relative to existing tools. Vector control via gene drive is worth considering as a supplemental intervention when the construct parameters and costs are suitable.One-sentence summaryWe estimate the impact and cost-effectiveness of gene drive mosquitoes, relative to existing interventions, in malaria elimination strategies


2021 ◽  
Vol 20 (07) ◽  
pp. A09
Author(s):  
Frauke Rohden

While research shows different links between activism and science, little is known about activists engaging in science communication online. Demanding that decision-makers should “listen to the scientists”, the climate movements Fridays for Future (FFF) and Extinction Rebellion (XR) emphasize the role of scientific knowledge in democratic decision-making. Exploring the two movements' hyperlinking practices reveals a difference in the extent and selection of hyperlinks on their websites, pointing to influencer-based communication and focus on popularization of science by FFF and expert-based communication leaning on academic publications by XR, with both movements acting as amplifiers of existing science communication efforts.


2019 ◽  
Author(s):  
Jackson Champer ◽  
Isabel Kim ◽  
Samuel E. Champer ◽  
Andrew G. Clark ◽  
Philipp W. Messer

ABSTRACTGene drives can potentially fixate in a population by biasing inheritance in their favor, opening up a variety of potential applications in areas such as disease-vector control and conservation. CRISPR homing gene drives have shown much promise for providing an effective drive mechanism, but they typically suffer from the rapid formation of resistance alleles. Even if the problem of resistance can be overcome, the utility of such drives would still be limited by their tendency to spread into all areas of a population. To provide additional options for gene drive applications that are substantially less prone to the formation of resistance alleles and could potentially remain confined to a target area, we developed several designs for CRISPR-based gene drives utilizing toxin-antidote (TA) principles. These drives target and disrupt an essential gene with the drive providing rescue. Here, we assess the performance of several types of TA gene drive systems using modeling and individual-based simulations. We show that Toxin-Antidote Recessive Embryo (TARE) drive should allow for the design of robust, regionally confined, population modification strategies with high flexibility in choosing drive promoters and recessive lethal targets. Toxin-Antidote Dominant Embryo (TADE) drive requires a haplolethal target gene and a germline-restricted promoter but should enable the design of both faster regional population modification drives and even regionally-confined population suppression drives. Toxin-antidote dominant sperm (TADS) drive can be used for population modification or suppression. It spreads nearly as quickly as a homing drive and can flexibly use a variety of promoters, but unlike the other TA systems, it is not regionally confined and requires highly specific target genes. Overall, our results suggest that CRISPR-based TA gene drives provide promising candidates for further development in a variety of organisms and may allow for flexible ecological engineering strategies.


Author(s):  
Elizabeth Good Christopherson

This chapter examines the distinct roles of philanthropic foundations in promoting knowledge and acceptance of scientific evidence, often in the face of controversy. The chapter reviews notable foundation efforts to advance and apply scientific research, support collaboration, elevate science communication, and encourage public engagement. It also draws attention to the lack of comprehensive research about foundations’ work in these areas, suggesting that future efforts more fully examine the impacts of foundation efforts and the potential for integrating the science of science communication with strategic foundation initiatives. The chapter concludes with actionable approaches to propel new work and research related to foundations’ roles in the science engagement landscape.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2014 ◽  
Vol 21 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Helen Pryce ◽  
Amanda Hall

Shared decision-making (SDM), a component of patient-centered care, is the process in which the clinician and patient both participate in decision-making about treatment; information is shared between the parties and both agree with the decision. Shared decision-making is appropriate for health care conditions in which there is more than one evidence-based treatment or management option that have different benefits and risks. The patient's involvement ensures that the decisions regarding treatment are sensitive to the patient's values and preferences. Audiologic rehabilitation requires substantial behavior changes on the part of patients and includes benefits to their communication as well as compromises and potential risks. This article identifies the importance of shared decision-making in audiologic rehabilitation and the changes required to implement it effectively.


Sign in / Sign up

Export Citation Format

Share Document