scholarly journals Earth’s outgoing longwave radiation linear due to H2O greenhouse effect

2018 ◽  
Vol 115 (41) ◽  
pp. 10293-10298 ◽  
Author(s):  
Daniel D. B. Koll ◽  
Timothy W. Cronin

Satellite measurements and radiative calculations show that Earth’s outgoing longwave radiation (OLR) is an essentially linear function of surface temperature over a wide range of temperatures (≳60 K). Linearity implies that radiative forcing has the same impact in warmer as in colder climates and is thus of fundamental importance for understanding past and future climate change. Although the evidence for a nearly linear relation was first pointed out more than 50 y ago, it is still unclear why this relation is valid and when it breaks down. Here we present a simple semianalytical model that explains Earth’s linear OLR as an emergent property of an atmosphere whose greenhouse effect is dominated by a condensable gas. Linearity arises from a competition between the surface’s increasing thermal emission and the narrowing of spectral window regions with warming and breaks down at high temperatures once continuum absorption cuts off spectral windows. Our model provides a way of understanding the longwave contribution to Earth’s climate sensitivity and suggests that extrasolar planets with other condensable greenhouse gases could have climate dynamics similar to Earth’s.

2013 ◽  
Vol 13 (8) ◽  
pp. 4057-4072 ◽  
Author(s):  
K. W. Bowman ◽  
D. T. Shindell ◽  
H. M. Worden ◽  
J.F. Lamarque ◽  
P. J. Young ◽  
...  

Abstract. We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5–20 ppb) in the Southern Hemisphere (SH) and modest high bias (5–10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005–2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120 mW m−2 OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39 ± 41 m Wm−2 relative to TES data. We show that there is a correlation (R2 = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750–2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100 m Wm−2. Removing these models leads to a mean ozone radiative forcing of 394 ± 42 m Wm−2. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 ± 60 m Wm−2 derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.


2016 ◽  
Vol 29 (13) ◽  
pp. 4939-4947 ◽  
Author(s):  
R. J. Bantges ◽  
H. E. Brindley ◽  
X. H. Chen ◽  
X. L. Huang ◽  
J. E. Harries ◽  
...  

Abstract Differences between Earth’s global mean all-sky outgoing longwave radiation spectrum as observed in 1970 [Interferometric Infrared Spectrometer (IRIS)], 1997 [Interferometric Monitor for Greenhouse Gases (IMG)], and 2012 [Infrared Atmospheric Sounding Instrument (IASI)] are presented. These differences are evaluated to determine whether these are robust signals of multidecadal radiative forcing and hence whether there is the potential for evaluating feedback-type responses. IASI–IRIS differences range from +2 K in the atmospheric window (800–1000 cm−1) to −5.5 K in the 1304 cm−1 CH4 band center. Corresponding IASI–IMG differences are much smaller, at 0.2 and −0.8 K, respectively. More noticeably, IASI–IRIS differences show a distinct step change across the 1042 cm−1 O3 band that is not seen in IASI–IMG comparisons. This step change is a consequence of a difference in behavior when moving from colder to warmer scenes in the IRIS data compared to IASI and IMG. Matched simulations for the relevant periods using ERA reanalyses mimic the spectral behavior shown by IASI and IMG rather than by IRIS. These findings suggest that uncertainties in the spectral response of IRIS preclude the use of these data for quantitative assessments of forcing and feedback processes.


2016 ◽  
Vol 29 (13) ◽  
pp. 4709-4721 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

Abstract The intertropical convergence zone (ITCZ) has been the focus of considerable research in recent years, with much of this work concerned with how the latitude of maximum tropical precipitation responds to natural climate variability and to radiative forcing. The width of the ITCZ, however, has received little attention despite its importance for regional climate and for understanding the general circulation of the atmosphere. This paper investigates the ITCZ width in simulations with an idealized general circulation model over a wide range of climates. The ITCZ, defined as the tropical region where there is time-mean ascent, displays rich behavior as the climate varies, widening with warming in cool climates, narrowing in temperate climates, and maintaining a relatively constant width in hot climates. The mass and energy budgets of the Hadley circulation are used to derive expressions for the area of the ITCZ relative to the area of the neighboring descent region, and for the sensitivity of the ITCZ area to changes in climate. The ITCZ width depends primarily on four quantities: the net energy input to the tropical atmosphere, the advection of moist static energy by the Hadley circulation, the transport of moist static energy by transient eddies, and the gross moist stability. Different processes are important for the ITCZ width in different climates, with changes in gross moist stability generally having a weak influence relative to the other processes. The results are likely to be useful for analyzing the ITCZ width in complex climate models and for understanding past and future climate change in the tropics.


2020 ◽  
Vol 20 (1) ◽  
pp. 281-301 ◽  
Author(s):  
Le Kuai ◽  
Kevin W. Bowman ◽  
Kazuyuki Miyazaki ◽  
Makoto Deushi ◽  
Laura Revell ◽  
...  

Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present-day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting radiative forcing evolution. To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-sky conditions, representing the sensitivities of the TOA flux in the 9.6 µm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. The principal culprits are tropical middle and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mW m−2 attributable to tropospheric ozone bias. Another set of five models have flux biases over 50 mW m−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mW m−2). We found that the atmospheric component (AM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model and Canadian Middle Atmosphere Model (CMAM) have the lowest TOA flux biases globally but are a result of cancellation of opposite biases due to different processes. Overall, the multi-model ensemble mean bias is -133±98 mW m−2, indicating that they are too atmospherically opaque due to trapping too much radiation in the atmosphere by overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the troposphere would have different impacts on the sensitivity of TOA flux to O3 and these competing effects add more uncertainties on the ozone radiative forcing. We find that the inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.


2007 ◽  
Vol 20 (15) ◽  
pp. 3982-4001 ◽  
Author(s):  
J. A. Griggs ◽  
J. E. Harries

Abstract The observation of changes in the earth’s spectrally resolved outgoing longwave radiation (OLR) provides a direct method of determining changes in the radiative forcing of the climate system. An earlier study showed that satellite-observed changes in the clear-sky outgoing longwave spectrum between 1997 and 1970 from the Infrared Interferometer Spectrometer (IRIS) and Interferometic Monitor of Greenhouse Gases (IMG) instruments could be related to changes in greenhouse gas composition. The authors present a new study that extends this to 2003, through the first use of a new, independent source of global atmospheric infrared spectra, from the Atmospheric Infrared Sounder (AIRS) experiment. AIRS is a dispersion grating spectrometer, while the other two were Fourier transform spectrometers, and this is taken into account in the analysis. The observed difference spectrum between the years 2003 and 1970 generally shows the signatures of greenhouse gas forcing, and also shows the sensitivity of the signatures to interannual variations in temperature. The new 2003 data support the conclusions found in the earlier work, though, interestingly, the methane (CH4) Q branch centered at 1304 cm−1 exhibits more complex behavior, showing a decrease in intensity in the difference spectrum between 1997 and 2003. Sensitivity analysis indicates that this is due to changes in temperature structure, superposed on an underlying increase in CH4. Radiative transfer calculations based on reanalysis data are used to simulate the changes in the OLR spectrum; limitations in such data and possible variations that could account for several observed effects are discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 862
Author(s):  
Vittoria Catara ◽  
Jaime Cubero ◽  
Joël F. Pothier ◽  
Eran Bosis ◽  
Claude Bragard ◽  
...  

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


Sign in / Sign up

Export Citation Format

Share Document