scholarly journals Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas

2021 ◽  
Vol 9 (4) ◽  
pp. 862
Author(s):  
Vittoria Catara ◽  
Jaime Cubero ◽  
Joël F. Pothier ◽  
Eran Bosis ◽  
Claude Bragard ◽  
...  

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.

2017 ◽  
Author(s):  
Marit Van Tiel ◽  
Adriaan J. Teuling ◽  
Niko Wanders ◽  
Marc J. P. Vis ◽  
Kerstin Stahl ◽  
...  

Abstract. Glaciers are essential hydrological reservoirs, storing and releasing water at various time scales. Short-term variability in glacier melt is one of the causes of streamflow droughts, defined as below normal water availabilities. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long time scales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the HBV-light model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamical glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975–2004) and future (2071–2100) period. Two existing threshold approaches to define future droughts are employed, (1) the threshold from the historical period and (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamical glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historic periods are more similar when the transient threshold is used, for both glacier dynamics conceptualisations. With the transient threshold causing factors of future droughts, can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short term climate variability on droughts and the dynamical glacier area to model realistic future discharges under climate change.


Author(s):  
Pankaj Kumar Rai ◽  
Zeba Mueed ◽  
Abhiroop Chowdhury ◽  
Ravi Deval ◽  
Dinesh Kumar ◽  
...  

The coronavirus pandemic has hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon brought to focus by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs are showing a broad range of anti-viral activities with different modes of action have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, and dexamethasone, tocilizumab, interferon-β, neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based anti-viral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role, use in managing SARS-CoV-2. Thus, this article is an attempt to review the current understanding of COVID-19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.


2006 ◽  
Vol 30 (6) ◽  
pp. 751-777 ◽  
Author(s):  
Risto K. Heikkinen ◽  
Miska Luoto ◽  
Miguel B. Araújo ◽  
Raimo Virkkala ◽  
Wilfried Thuiller ◽  
...  

Potential impacts of projected climate change on biodiversity are often assessed using single-species bioclimatic ‘envelope’models. Such models are a special case of species distribution models in which the current geographical distribution of species is related to climatic variables so to enable projections of distributions under future climate change scenarios. This work reviews a number of critical methodological issues that may lead to uncertainty in predictions from bioclimatic modelling. Particular attention is paid to recent developments of bioclimatic modelling that address some of these issues as well as to the topics where more progress needs to be made. Developing and applying bioclimatic models in a informative way requires good understanding of a wide range of methodologies, including the choice of modelling technique, model validation, collinearity, autocorrelation, biased sampling of explanatory variables, scaling and impacts of non-climatic factors. A key challenge for future research is integrating factors such as land cover, direct CO2 effects, biotic interactions and dispersal mechanisms into species-climate models. We conclude that, although bioclimatic envelope models have a number of important advantages, they need to be applied only when users of models have a thorough understanding of their limitations and uncertainties.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Néstor Pérez-Méndez ◽  
Cristina Miguel-Rojas ◽  
Jose Antonio Jimenez-Berni ◽  
David Gomez-Candon ◽  
Alejandro Pérez-de-Luque ◽  
...  

Wheat and rice are two main staple food crops that may suffer from yield losses due to drought episodes that are increasingly impacted by climate change, in addition to new epidemic outbreaks. Sustainable intensification of production will rely on several strategies, such as efficient use of water and variety improvement. This review updates the latest findings regarding complementary approaches in agronomy, genetics, and phenomics to cope with climate change challenges. The agronomic approach focuses on a case study examining alternative rice water management practices, with their impact on greenhouse gas emissions and biodiversity for ecosystem services. The genetic approach reviews in depth the latest technologies to achieve fungal disease resistance, as well as the use of landraces to increase the genetic diversity of new varieties. The phenomics approach explores recent advances in high-throughput remote sensing technologies useful in detecting both biotic and abiotic stress effects on breeding programs. The complementary nature of all these technologies indicates that only interdisciplinary work will ensure significant steps towards a more sustainable agriculture under future climate change scenarios.


2019 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Ramiro Silveyra Gonzalez ◽  
Klara Dolos ◽  
Florian Hartig ◽  
Ylva Hauf ◽  
...  

Abstract. Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand-level, as well as remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction, and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a SQLite relational database or ASCII flat file version (at https://doi.org/10.5880/PIK.2019.008). The data policies of the individual, contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R-package (https://github.com/COST-FP1304-PROFOUND/ProfoundData), which provides basic functions to explore, plot, and extract the data for model set-up, calibration and evaluation.


2020 ◽  
Vol 183 ◽  
pp. 03002
Author(s):  
Youssef Brouziyne ◽  
Abdelghani Chehbouni ◽  
Aziz Abouabdillah ◽  
Jamal Hallam ◽  
Fouad Moudden ◽  
...  

Rainfed agriculture is becoming increasingly vulnerable to climate change. This situation is expected to worsen under most future climate projections, which might increase the risks linked to food security and economies which depend on it. Providing insights about the potential responses of rainfed crops to climate change will helps on designing future adaptation strategies. In this study, large amount of data and the agro-hydrological model SWAT have been used to investigate future climate change impacts on rainfed wheat and sunflower crops in a semiarid watershed in Morocco (R’dom watershed). Downscaled CORDEX climate projections were used in generating future plants growth simulation for R’dom watershed in the 2031 to 2050 horizon under two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The main results of climate change scenarios highlighted that R’dom watershed will undergo significant decrease in water resources availability with more impact under the scenario RCP 8.5. Water productivities of both studied crops could be lower by up to -21% in comparison with baseline situation. Different sustainable management strategies have been simulated using SWAT model under climate change context. The adopted approach succeeded in building up sustainable management strategies toward secured food security in the future.


2021 ◽  
Author(s):  
Amar Bahadur

Fusarium spp. is one of the most economically important plant pathogens causing a wide range of plant diseases with significant crop losses globally. Fusarium wilt is a major problem all over the world. Fusarium oxysporum, Fusarium solani, Fusarium fujikuroi are economic importance species in worldwide. Fusarium solani causing disease in many agriculturally crops and favored by high temperatures and warm moist soils. The fungus produces three types of asexual spores; microconidia, macroconidia and chlamydospores serve as propagules in infecting host plants and found endophytes and saprophytes. The color of the colony, length and shape of the macroconidia, the number shape of microconidia and the presence or absence of chlamydospores are key features for the differentiation of Fusarium species. Pathogens, forms over 100 formae speciales cause disease in dicot and monocot plant species and infecting a variety of hosts. Vegetative compatibility Groups (VCG) is used to differentiate their races. Resistant cultivars and bio-control agents (Trichoderma spp., and Psedomonas spp.) have been used to manage the disease.


2020 ◽  
Vol 12 (2) ◽  
pp. 1295-1320 ◽  
Author(s):  
Christopher P. O. Reyer ◽  
Ramiro Silveyra Gonzalez ◽  
Klara Dolos ◽  
Florian Hartig ◽  
Ylva Hauf ◽  
...  

Abstract. Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 368-383 ◽  
Author(s):  
Mark L. Gleason ◽  
Jean C. Batzer ◽  
Guangyu Sun ◽  
Rong Zhang ◽  
Maria M. Díaz Arias ◽  
...  

Sooty blotch and flyspeck (SBFS) fungi colonize the surface wax layer of the fruit of apple, pear, persimmon, banana, orange, papaya, and several other cultivated tree and vine crops. In addition to colonizing cultivated fruit crops, SBFS fungi also grow on the surfaces of stems, twigs, leaves, and fruit of a wide range of wild plants. The disease occurs worldwide in regions with moist growing seasons. SBFS is regarded as a serious disease by fruit growers and plant pathologists because it can cause substantial economic damage. The smudges and stipples of SBFS often result in downgrading of fruit from premium fresh-market grade to processing use. This review describes the major shifts that have occurred during the past decade in understanding the genetic diversity of the SBFS complex, clarifying its biogeography and environmental biology, and developing improved management strategies.


Author(s):  
Shelagh K. Malham ◽  
Thomas H. Hutchinson ◽  
Matt Longshaw

This review examines the biology of the two main cockle speciesCerastoderma eduleandC. glaucumfound in coastal areas around the north-east Atlantic from Norway to Morocco and through the Baltic, Mediterranean and Black Sea. It considers those factors in particular that impact on the overall health and survival of individuals as well as populations. Methods for the discrimination of the species are reviewed as well as the approaches being taken to delineate different populations, which is crucial to appropriately manage individual fisheries. Cockle populations generally undergo sexual maturation during their second summer and sexes are separate. Eggs are pelagic, with larvae being both benthic and pelagic before settling on the sediment and becoming benthic adults. However, data are lacking on basic larval biology and dispersal mechanisms. Data are provided on predator–prey relationships including information on types of food of importance to cockles. Main predators of cockles include brown shrimp, shore crabs, gastropods, polychaetes, fish and a variety of birds and these can be important in structuring cockle populations. Predation of larval cockles by adult cockles through larviphagy can lead to reductions of up to 40% of the population. Cockles are sensitive to a wide range of chemical contaminants but few data are published on impacts on cockles, in particular larval stages. The review concludes with an assessment of future climate change scenarios on cockles and considers some areas of future research required to preserve this ecologically and economically important species.


Sign in / Sign up

Export Citation Format

Share Document