scholarly journals Amyloid found in human cataracts with two-dimensional infrared spectroscopy

2019 ◽  
Vol 116 (14) ◽  
pp. 6602-6607 ◽  
Author(s):  
Ariel M. Alperstein ◽  
Joshua S. Ostrander ◽  
Tianqi O. Zhang ◽  
Martin T. Zanni

UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid β-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid β-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.

Open Biology ◽  
2013 ◽  
Vol 3 (11) ◽  
pp. 130100 ◽  
Author(s):  
Zhisheng Lu ◽  
Julien R. C. Bergeron ◽  
R. Andrew Atkinson ◽  
Torsten Schaller ◽  
Dennis A. Veselkov ◽  
...  

The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiquitination and proteolysis. The suppressors-of-cytokine-signalling-like domain (SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a BC box as well as an unusual proline-rich motif. Here, we report the NMR solution structure of the Vif SOCS–ElonginBC (EloBC) complex. In contrast to SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only one α-helical domain followed by a β-sheet fold. The SOCS-box of Vif binds primarily to EloC by hydrophobic interactions. The functionally essential proline-rich motif mediates a direct but weak interaction with residues 101–104 of EloB, inducing a conformational change from an unstructured state to a structured state. The structure of the complex and biophysical studies provide detailed insight into the function of Vif's proline-rich motif and reveal novel dynamic information on the Vif–EloBC interaction.


2021 ◽  
Vol 22 (3) ◽  
pp. 1225
Author(s):  
Ziao Fu ◽  
William E. Van Nostrand ◽  
Steven O. Smith

The amyloid-β (Aβ) peptides are associated with two prominent diseases in the brain, Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). Aβ42 is the dominant component of cored parenchymal plaques associated with AD, while Aβ40 is the predominant component of vascular amyloid associated with CAA. There are familial CAA mutations at positions Glu22 and Asp23 that lead to aggressive Aβ aggregation, drive vascular amyloid deposition and result in degradation of vascular membranes. In this study, we compared the transition of the monomeric Aβ40-WT peptide into soluble oligomers and fibrils with the corresponding transitions of the Aβ40-Dutch (E22Q), Aβ40-Iowa (D23N) and Aβ40-Dutch, Iowa (E22Q, D23N) mutants. FTIR measurements show that in a fashion similar to Aβ40-WT, the familial CAA mutants form transient intermediates with anti-parallel β-structure. This structure appears before the formation of cross-β-sheet fibrils as determined by thioflavin T fluorescence and circular dichroism spectroscopy and occurs when AFM images reveal the presence of soluble oligomers and protofibrils. Although the anti-parallel β-hairpin is a common intermediate on the pathway to Aβ fibrils for the four peptides studied, the rate of conversion to cross-β-sheet fibril structure differs for each.


2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
Peeraporn Varinthra ◽  
Shun-Ping Huang ◽  
Supin Chompoopong ◽  
Zhi-Hong Wen ◽  
Ingrid Y. Liu

Age-related macular degeneration (AMD) is a progressive eye disease that causes irreversible impairment of central vision, and effective treatment is not yet available. Extracellular accumulation of amyloid-beta (Aβ) in drusen that lie under the retinal pigment epithelium (RPE) has been reported as one of the early signs of AMD and was found in more than 60% of Alzheimer’s disease (AD) patients. Extracellular deposition of Aβ can induce the expression of inflammatory cytokines such as IL-1β, TNF-α, COX-2, and iNOS in RPE cells. Thus, finding a compound that can effectively reduce the inflammatory response may help the treatment of AMD. In this research, we investigated the anti-inflammatory effect of the coral-derived compound 4-(phenylsulfanyl) butan-2-one (4-PSB-2) on Aβ1-42 oligomer (oAβ1-42) added to the human adult retinal pigment epithelial cell line (ARPE-19). Our results demonstrated that 4-PSB-2 can decrease the elevated expressions of TNF-α, COX-2, and iNOS via NF-κB signaling in ARPE-19 cells treated with oAβ1-42 without causing any cytotoxicity or notable side effects. This study suggests that 4-PSB-2 is a promising drug candidate for attenuation of AMD.


2021 ◽  
Vol 22 (14) ◽  
pp. 7637
Author(s):  
Liliya T. Sahharova ◽  
Evgeniy G. Gordeev ◽  
Dmitry B. Eremin ◽  
Valentine P. Ananikov

The processes involving the capture of free radicals were explored by performing DFT molecular dynamics simulations and modeling of reaction energy profiles. We describe the idea of a radical recognition assay, where not only the presence of a radical but also the nature/reactivity of a radical may be assessed. The idea is to utilize a set of radical-sensitive molecules as tunable sensors, followed by insight into the studied radical species based on the observed reactivity/selectivity. We utilize this approach for selective recognition of common radicals—alkyl, phenyl, and iodine. By matching quantum chemical calculations with experimental data, we show that components of a system react differently with the studied radicals. Possible radical generation processes were studied involving model reactions under UV light and metal-catalyzed conditions.


2021 ◽  
Vol 22 (6) ◽  
pp. 3244
Author(s):  
Charuvaka Muvva ◽  
Natarajan Arul Murugan ◽  
Venkatesan Subramanian

A wide variety of neurodegenerative diseases are characterized by the accumulation of protein aggregates in intraneuronal or extraneuronal brain regions. In Alzheimer’s disease (AD), the extracellular aggregates originate from amyloid-β proteins, while the intracellular aggregates are formed from microtubule-binding tau proteins. The amyloid forming peptide sequences in the amyloid-β peptides and tau proteins are responsible for aggregate formation. Experimental studies have until the date reported many of such amyloid forming peptide sequences in different proteins, however, there is still limited molecular level understanding about their tendency to form aggregates. In this study, we employed umbrella sampling simulations and subsequent electronic structure theory calculations in order to estimate the energy profiles for interconversion of the helix to β-sheet like secondary structures of sequences from amyloid-β protein (KLVFFA) and tau protein (QVEVKSEKLD and VQIVYKPVD). The study also included a poly-alanine sequence as a reference system. The calculated force-field based free energy profiles predicted a flat minimum for monomers of sequences from amyloid and tau proteins corresponding to an α-helix like secondary structure. For the parallel and anti-parallel dimer of KLVFFA, double well potentials were obtained with the minima corresponding to α-helix and β-sheet like secondary structures. A similar double well-like potential has been found for dimeric forms for the sequences from tau fibril. Complementary semi-empirical and density functional theory calculations displayed similar trends, validating the force-field based free energy profiles obtained for these systems.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 829-829
Author(s):  
Nathan LeBrasseur

Abstract Dynamic measures of physical resilience—the ability to resist and recover from a challenge—may be informative of biological age far prior to overt manifestations such as age-related diseases and geriatric syndromes (i.e., frailty). If true, physical resilience at younger or middle ages may be predictive of future healthspan and lifespan, and provide a unique paradigm in which interventions targeting the fundamental biology of aging can be tested. This seminar will discuss research on the development of clinically-relevant measures of physical resilience in mice, including anesthesia, surgery, and cytotoxic drugs. It will further highlight how these measures compare between young, middle-aged, and older mice, and how mid-life resilience relates to later-life healthspan. Finally, it will provide insight into whether interventions targeting the biology of aging can modify physical resilience in mice. Part of a symposium sponsored by Epidemiology of Aging Interest Group.


Sign in / Sign up

Export Citation Format

Share Document