scholarly journals Why haploinsufficiency persists

Author(s):  
Summer A. Morrill ◽  
Angelika Amon

Haploinsufficiency describes the decrease in organismal fitness observed when a single copy of a gene is deleted in diploids. We investigated the origin of haploinsufficiency by creating a comprehensive dosage sensitivity data set for genes under their native promoters. We demonstrate that the expression of haploinsufficient genes is limited by the toxicity of their overexpression. We further show that the fitness penalty associated with excess gene copy number is not the only determinant of haploinsufficiency. Haploinsufficient genes represent a unique subset of genes sensitive to copy number increases, as they are also limiting for important cellular processes when present in one copy instead of two. The selective pressure to decrease gene expression due to the toxicity of overexpression, combined with the pressure to increase expression due to their fitness-limiting nature, has made haploinsufficient genes extremely sensitive to changes in gene expression. As a consequence, haploinsufficient genes are dosage stabilized, showing much more narrow ranges in cell-to-cell variability of expression compared with other genes in the genome. We propose a dosage-stabilizing hypothesis of haploinsufficiency to explain its persistence over evolutionary time.

2010 ◽  
Vol 28 (13) ◽  
pp. 2174-2180 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Daniel T. Merrick ◽  
Samir E. Witta ◽  
Adelita D. Mendoza ◽  
Barbara Szostakiewicz ◽  
...  

PurposeThe purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non–small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis.Patients and MethodsOne hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181).ResultsIGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis.ConclusionIGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17490 ◽  
Author(s):  
Zhifu Sun ◽  
Yan W. Asmann ◽  
Krishna R. Kalari ◽  
Brian Bot ◽  
Jeanette E. Eckel-Passow ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 803-803
Author(s):  
Fabrice Jardin ◽  
Jean-Philippe Jais ◽  
Thierry Jo Molina ◽  
Francoise Parmentier ◽  
Jean-Michel Picquenot ◽  
...  

Abstract Genomic gains and losses play a crucial role in the development and progression of DLBCL. Some gains or losses are associated with particular morphologic or clinical manifestations and correlate with the “germinal center B-cell like” (GCB)/non-GCB phenotype, as defined by gene expression profiles (GEP). We previously developed a reliable and routinely single applicable PCR assay, which provided information regarding gain/loss of relevant genes, and prognosis in DLBCL, termed QMPSF (Multiplex PCR of Short Fluorescent Fragments). Here, we combined GEP and QMPSF approaches to delineate molecular pathways related to recurrent gene copy number abnormalities (GCNA) and assess their prognosis value in patients treated by R-CHOP. For this purpose a series of 69 newly diagnosed DLBCL, included in the 98–5 GELA trial with available tumor DNA was studied (median age = 69 years [59–79], IPI2–3: 64%; 4–5: 36%, 40 treated by R-CHOP and 29 by CHOP). A single QMPSF assay, validated by CGH array, to detect GCNA of 8 relevant genes including SIM1 (6q16), MYC (8q24), CDNK2A (9p21), RB1 (13q14), REL (2p13), BCL2 (18q21), TP53 (17p13), and CDKN1B (12p13) was performed. In addition a dedicated QMPSF assay that provides a “bar code” of the 9p21 locus containing CDKN2A (p16INK4a and p14ARF) and CDKN2B (p15INK4b) was designed. To delineate specific gene expression profile according to recurrent GCNA a subset of 52 patients were studied by both GEP (Affymetrix U133A) and QMPSF technologies. Gains of MYC, BCL2, and REL were observed in 13, 28 and 20 % respectively. DNA copy losses of TP53, CDNK2A, RB1 and SIM1 were observed in 9, 40, 6 and 17 % of cases respectively. Using supervised analysis, we delineated specific GEP according to the most frequent GCNA detected by QMPSF. Interestingly, a signature related to 9p21 locus (CDKN2A/CDKN2B) deletion was associated with an overexpression of several ribosome machinery coding genes and the involvement of distinct antiapoptotic molecular mechanisms. Subsequent genomic analysis with the dedicated assay indicated that in most of cases deletions were homozygous and abolished simultaneously p14arf and p16INK4a expression. With a median follow-up of 81 months, CDKN2A deletion, strongly correlates to a poor outcome in the entire cohort (5y OS=25% respectively vs.60% for patients in germline configuration, p=.003) and in the subgroup of patients treated by R-CHOP (5y OS=40% vs.70%, p=.04). Furthermore, prognosis impact of GCNA involving CDKN2A was validated in an independent set of 35 patients treated by R-CHOP. To conclude, combination of QMPSF and GEP may constitute a powerful approach to delineate new genomic pathways with prognosis impact in DLBCL. Notably, CDKN2A/CDKN2B loss, detected in more than one third of DLBCL patients constitutes a strong factor of chemoresistance that is not overcome by R combination. GEP indicates that this may be a consequence of an independent p14arf/p53 pathway, involving the well-established p14arf related ribosome regulation function.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3641-3641
Author(s):  
Filippo Pietrantonio ◽  
Anna Tessari ◽  
Rosalba Miceli ◽  
Pamela Biondani ◽  
Federica Perrone ◽  
...  

3641 Background: KRAS, BRAF, NRAS and exon 20 PIK3CA quadruple wild-type CRC is associated with 41.2% response rate to anti-EGFR treatments. Even in molecular characterized patients, there is still a subset of non responders. The identification of additional predictive biomarkers is an unmet clinical need for treatment personalization. Alterations of ALK oncoprotein may interfere with the biological activity of EGFR through cross-talk of downstream signalling pathways. Methods: This retrospective analysis aimed to investigate the correlation between ALK gene copy number (GCN), assessed by fluorescence in situ hybridization (FISH), and clinical outcome in KRAS/NRAS/BRAF/PI3KCA wild-type chemorefractory advanced CRC patients receiving cetuximab or panitumumab. FISH was perfomed with break-apart ALK (2p23) probes and gain of ALK GCN was defined as a mean of 3 to 5 signals in ≥10% of cells and amplification as ≥6 signals. Association of ALK status with RECIST response was performed by Fisher’s exact test. Results: Forty-one patients were identified, of whom 17 (41%) were ALK GCN positive, whereas the remaining 24 cases (59%) were ALK GCN negative. No ALK translocations were detected. Overall response rate was 19/41 (46%). We observed a partial response in 3/17 patients with ALK GCN positive versus 16/24 patients with ALK GCN negative (18% versus 67%, respectively; P=0.0036). Kaplan-meier curves for comparison of median progression-free and overall survival, as well as correlation with ALK expression by immunohistochemistry, will be presented at the Meeting exploring the whole National Cancer Institute data-set. Conclusions: In this study population with KRAS/NRAS/BRAF/PI3KCA wild-type tumors, the response rate greater than 40% is in line with literature data. ALK GCN may be a biomarker for clinical outcome prediction in advanced chemorefractory CRC patients treated with cetuximab or panitumumab.


2011 ◽  
Vol 96 (11) ◽  
pp. E1876-E1880 ◽  
Author(s):  
Jaroslaw Jendrzejewski ◽  
Jerneja Tomsic ◽  
Gerard Lozanski ◽  
Jadwiga Labanowska ◽  
Huiling He ◽  
...  

Abstract Context: The family risk ratio for papillary thyroid carcinoma (PTC) is among the highest of all cancers. Collectively, familial cases (fPTC) and sporadic cases (sPTC) are not known to show molecular differences. However, one study reported that telomeres were markedly shorter and the telomerase reverse transcriptase (TERT) gene was amplified and up-regulated in germline DNA from patients with fPTC compared with sPTC. Objective: The aim of this study was to evaluate telomere length and TERT gene amplification and expression in blood samples of fPTC and sPTC patients in a genetically distinct population from the previous study. Design: In 42 fPTC and 65 sPTC patients, quantitative real-time PCR was employed to measure the relative telomere length (RTL) and TERT gene copy number and RNA level. To validate the results using alternative methods, we further studied a subset of the original cohort consisting of randomly chosen fPTC (n = 10) and sPTC (n = 14) patients and controls (n = 21) by assessing both telomere length by flow fluorescent in situ hybridization and TERT gene expression by quantitative real-time PCR. Results: RTL and TERT gene copy number did not differ between fPTC and sPTC (P = 0.957 and P = 0.998, respectively). The mean RTL and TERT gene expression were not significantly different among the groups of the validation series (P = 0.169 and P = 0.718, respectively). Conclusion: Our data show no difference between familial and sporadic PTC with respect to telomere length, TERT copy number, or expression in our cohort. Further investigations in additional cohorts of patients are desirable.


2012 ◽  
Vol 160 (3) ◽  
pp. 1420-1431 ◽  
Author(s):  
Dylan B. Udy ◽  
Susan Belcher ◽  
Rosalind Williams-Carrier ◽  
José M. Gualberto ◽  
Alice Barkan

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Arman Shahrisa ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Ansari ◽  
Zahra Mohammadi ◽  
Vinicio Carloni ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer that occurs predominantly in patients with previous liver conditions. In the absence of an ideal screening modality, HCC is usually diagnosed at an advanced stage. Recent studies show that loss or gain of genomic materials can activate the oncogenes or inactivate the tumor suppressor genes to predispose cells toward carcinogenesis. Here, we evaluated both the copy number alteration (CNA) and RNA sequencing data of 361 HCC samples in order to locate the frequently altered chromosomal regions and identify the affected genes. Results Our data show that the chr1q and chr8p are two hotspot regions for genomic amplifications and deletions respectively. Among the amplified genes, YY1AP1 (chr1q22) possessed the largest correlation between CNA and gene expression. Moreover, it showed a positive correlation between CNA and tumor grade. Regarding deleted genes, CHMP7 (chr8p21.3) possessed the largest correlation between CNA and gene expression. Protein products of both genes interact with other cellular proteins to carry out various functional roles. These include ASH1L, ZNF496, YY1, ZMYM4, CHMP4A, CHMP5, CHMP2A and CHMP3, some of which are well-known cancer-related genes. Conclusions Our in-silico analysis demonstrates the importance of copy number alterations in the pathology of HCC. These findings open a door for future studies that evaluate our results by performing additional experiments.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Cristina Cruz ◽  
Jonathan Houseley

A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome.


Sign in / Sign up

Export Citation Format

Share Document