scholarly journals Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions?

2019 ◽  
Vol 116 (35) ◽  
pp. 17156-17157 ◽  
Author(s):  
Lars G. M. Pettersson ◽  
Yoshihisa Harada ◽  
Anders Nilsson
2019 ◽  
Vol 116 (10) ◽  
pp. 4058-4063 ◽  
Author(s):  
Johannes Niskanen ◽  
Mattis Fondell ◽  
Christoph J. Sahle ◽  
Sebastian Eckert ◽  
Raphael M. Jay ◽  
...  

The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 ± 2.1% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray–matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.


2019 ◽  
Vol 116 (35) ◽  
pp. 17158-17159 ◽  
Author(s):  
Johannes Niskanen ◽  
Mattis Fondell ◽  
Christoph J. Sahle ◽  
Sebastian Eckert ◽  
Raphael M. Jay ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


2014 ◽  
Vol 70 (a1) ◽  
pp. C165-C165
Author(s):  
Michał Stękiel ◽  
Radosław Przeniosło ◽  
Dariusz Wardecki ◽  
Thomas Buslaps ◽  
Jacek Jasiński

The magnetic interaction between the crystallites of weak ferromagnetic α-Fe2O3 has been studied by combining SR based X-ray diffraction with an externally applied magnetic field. The measurements were performed with several polycrystalline α-Fe2O3 [1,2] samples (dry or in suspensions) placed in a half-filled cylindrical container in ambient conditions. The axis of the cylindrical container was oriented vertically parallel to the applied dc magnetic field. The polycrystalline sample had a free surface, so the α-Fe2O3 crystallites were free to move. The full Debye-Scherrer diffraction rings were measured with a 2D pixel detector at the beamline ID-15B at ESRF. In the absence of the magnetic field the intensity distribution over azimuthal angle was a uniform, i.e. there was no texture. The applied maximal field, B=0.9T was too small to change the magnetic ordering of α-Fe2O3 but it was sufficiently strong to reorient large amount of crystallites in order to minimize the angle between their ferromagnetic moment direction and the external field. Pronounced texture patterns with clear maxima in the angular distribution of the intensity across each Debye-Scherrer ring were observed. The observed textured intensity distribution was analyzed quantitatively by using a model based on the magnetic anisotropy observed in single crystals of α-Fe2O3. The analysis yielded two important parameters: (i) the width of the angular distribution of the ferromagnetic moments directions around the external field direction, and (ii) the relative quantity of the crystallites that did reorient in the external field. The α-Fe2O3 samples were also characterized with TEM technique. The analysis of X-ray and TEM studies provide new conclusions about the magnetic interaction between the α-Fe2O3 crystallites [3]. The proposed measurement technique can be applied to study other weak ferromagnetic materials.


2021 ◽  
Vol 880 ◽  
pp. 83-88
Author(s):  
Mary Donnabelle L. Balela ◽  
Reginald E. Masirag ◽  
Francis O. Pacariem Jr. ◽  
Juicel Marie D. Taguinod

Binderless supercapacitor electrodes are currently being employed to increase the surface contact between the active material and current collector, leading to enhanced capacitance. In binderless electrodes, the active material is directly grown on the surface of the current collector, omitting the use of insulative polymer-based binders. In this work, Cu foam was successfully electrodeposited on Cu sheet by dynamic hydrogen bubble templating (DHBT) using polyethylene glycol (PEG) and sodium bromide (NaBr) as additives. The current density was set at 3 A·cm-2 and electrodeposition was performed for 20 s. At 200 mg/L PEG, increasing the NaBr concentration from 0 to 80 mM produced Cu foam with decreasing pores sizes of about 75.15 to 34.10 μm. However, the walls of the interconnected pores became thicker as the pore diameters were reduced. This indicates that NaBr promotes Cu deposition rather than hydrogen evolution reaction (HER), leading to smaller pore sizes. X-ray diffraction confirms the oxidation of the Cu foam under ambient conditions forming cuprous oxide (Cu2O). The Cu2O/Cu foam was then utilized as binderless electrode for supercapacitor, resulting to a specific capacitance of 0.815 F·cm-2 at 5 mV·s-1. Results show the potential of the fabricated Cu2O/Cu foam as binderless electrode for pseudo-type supercapacitors.


2017 ◽  
Vol 686 ◽  
pp. 183-188 ◽  
Author(s):  
Michael Pravica ◽  
Egor Evlyukhin ◽  
Petrika Cifligu ◽  
Blake Harris ◽  
Jung Jae Koh ◽  
...  

2003 ◽  
Vol 805 ◽  
Author(s):  
D. Veys ◽  
P. Weisbecker ◽  
V. Fournée ◽  
B. Domenichini ◽  
S. Weber ◽  
...  

ABSTRACTWe have investigated the surface properties of quasicrystalline and approximant phases in the Al-(Cu)-Cr-Fe system upon aging in ambient conditions. We found that some of these properties (like the electrochemical behavior, wetting or friction) slowly evolves with the length of exposure to normal atmospheric conditions, reaching a stable state only after several days. This report essentially focuses on one of these alloys, an Al65Cr27Fe8 approximant phase with g-brass structure. In a first part, we describe the effect of aging on the electrochemical behavior of this alloy and we propose an interpretation based on a simple electrical model of the oxidized surface. In a second part, we present a model describing the surface as a stacking of several layers (oxides, oxy-hydroxides, contamination) whose thickness evolves with time. The model is supported by X-ray reflectivity, angle-resolved photoemission spectroscopy and secondary neutral mass spectroscopy measurements.


Sign in / Sign up

Export Citation Format

Share Document