Effect of NABr on the Pore Size and Surface Morphology of Cu Foam Prepared by Hydrogen Bubble Templating

2021 ◽  
Vol 880 ◽  
pp. 83-88
Author(s):  
Mary Donnabelle L. Balela ◽  
Reginald E. Masirag ◽  
Francis O. Pacariem Jr. ◽  
Juicel Marie D. Taguinod

Binderless supercapacitor electrodes are currently being employed to increase the surface contact between the active material and current collector, leading to enhanced capacitance. In binderless electrodes, the active material is directly grown on the surface of the current collector, omitting the use of insulative polymer-based binders. In this work, Cu foam was successfully electrodeposited on Cu sheet by dynamic hydrogen bubble templating (DHBT) using polyethylene glycol (PEG) and sodium bromide (NaBr) as additives. The current density was set at 3 A·cm-2 and electrodeposition was performed for 20 s. At 200 mg/L PEG, increasing the NaBr concentration from 0 to 80 mM produced Cu foam with decreasing pores sizes of about 75.15 to 34.10 μm. However, the walls of the interconnected pores became thicker as the pore diameters were reduced. This indicates that NaBr promotes Cu deposition rather than hydrogen evolution reaction (HER), leading to smaller pore sizes. X-ray diffraction confirms the oxidation of the Cu foam under ambient conditions forming cuprous oxide (Cu2O). The Cu2O/Cu foam was then utilized as binderless electrode for supercapacitor, resulting to a specific capacitance of 0.815 F·cm-2 at 5 mV·s-1. Results show the potential of the fabricated Cu2O/Cu foam as binderless electrode for pseudo-type supercapacitors.

2018 ◽  
Vol 916 ◽  
pp. 50-54
Author(s):  
Cyron L. Custodio ◽  
John Lemuel G. Untalasco ◽  
Menandro C. Marquez

Metal oxide semiconductors such as cobaltous oxide (Co3O4) and cuprous oxide (Cu2O) have caught the attention of many researchers due to their wide variety of applications. The attachment of Cu2O to Co3O4 was assisted by polyethylene glycol and the nanostructuring by ultrasonic sound. X-ray Diffraction (XRD) analysis of the fabricated composite reported characteristic peaks for crystalline Co3O4 and Cu2O. Results from Energy Dispersive X-ray (EDX) Spectroscopy showed the presence of cobalt, copper, and oxygen atoms which supports the result obtained in XRD. Cauliflower to nearly spherical shaped Cu2O - Co3O4 nanostructures were formed as observed in the Scanning Electron Micrographs (SEM) with a mean diameter of 0.5-1.0 μm. the shape of the composite and its surface morphology was altered with the use of different precursor materials for the synthesis of the Co3O4 seed. A blue shift in the UV-vis was observed upon the use of nitrate based precursor indicating the presence of smaller and finer particles in the composite. Overall results prove that Cu2O and Co3O4 can be synthesized using a facile solution approach with the aid of PEG and ultrasonic sound its application in the field of photocatalysis is probable.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1615
Author(s):  
Gulnur Kalimuldina ◽  
Arailym Nurpeissova ◽  
Assyl Adylkhanova ◽  
Nurbolat Issatayev ◽  
Desmond Adair ◽  
...  

Conductive and flexible CuS films with unique hierarchical nanocrystalline branches directly grown on three-dimensional (3D) porous Cu foam were fabricated using an easy and facile solution processing method without a binder and conductive agent for the first time. The synthesis procedure is quick and does not require complex routes. The structure and morphology of the as-deposited CuS/Cu films were characterized by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and transmission electron spectroscopy, respectively. Pure crystalline hexagonal structured CuS without impurities were obtained for the most saturated S solution. Electrochemical testing of CuS/Cu foam electrodes showed a reasonable capacity of 450 mAhg−1 at 0.1 C and excellent cyclability, which might be attributed to the unique 3D structure of the current collector and hierarchical nanocrystalline branches that provide fast diffusion and a large surface area.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ryosuke Sinmyo ◽  
Elena Bykova ◽  
Sergey V. Ovsyannikov ◽  
Catherine McCammon ◽  
Ilya Kupenko ◽  
...  

Abstract Iron oxides are fundamentally important compounds for basic and applied sciences as well as in numerous industrial applications. In this work we report the synthesis and investigation of a new binary iron oxide with the hitherto unknown stoichiometry of Fe7O9. This new oxide was synthesized at high-pressure high-temperature (HP-HT) conditions, and its black single crystals were successfully recovered at ambient conditions. By means of single crystal X-ray diffraction we determined that Fe7O9 adopts a monoclinic C2/m lattice with the most distorted crystal structure among the binary iron oxides known to date. The synthesis of Fe7O9 opens a new portal to exotic iron-rich (M,Fe)7O9 oxides with unusual stoichiometry and distorted crystal structures. Moreover, the crystal structure and phase relations of such new iron oxide groups may provide new insight into the cycling of volatiles in the Earth’s interior.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Zhang ◽  
Ying Zhang ◽  
Dong Wang ◽  
Fengyu Qu

Perfect cuprous oxide (Cu2O) nanocrystals with octahedron shape were successfully synthesized by a facile route without chemical additive in a short time. The products were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The adsorption ability of the products towards congo red (CR) as the pollutant was investigated and FTIR spectroscopy was employed to identify the adsorbed species. The adsorption behavior was analyzed based on the microstructure of Cu2O submicro-octahedra.


2013 ◽  
Vol 709 ◽  
pp. 89-92
Author(s):  
Xiang Li ◽  
Xin Mei Liu ◽  
Zi Feng Yan

In the presence of polyethylene glycol (PEG2W),bimodal mesoporous γ-Al2O3 was successfully synthesized via hydrothermal method. The samples were respectively characterized by X-ray diffraction (XRD), N2 physisorption, transmission electron microscopy (TEM), thermogravimetric and differential scanning calorimeter (TG-DSC). Introduction of PEG2W can increase the relative crystallinity of AACH and γ-Al2O3. The BET surface area and pore volume of alumina shows an increasing trend with increasing of PEG2W content, while the pore size shows an opposite tendency. The PEG2W also plays an important role in inducing the formation of the nanorod-like alumina.


2016 ◽  
Vol 94 (4) ◽  
pp. 424-429 ◽  
Author(s):  
Alasdair P.M. Robertson ◽  
Saurabh S. Chitnis ◽  
Seth Chhina ◽  
Hector J. Cortes S. ◽  
Brian O. Patrick ◽  
...  

The Lewis acceptor chemistry of Me3SiOTf with p-block Lewis bases has been explored and a library of complexes has been characterized by spectroscopic and, where possible, crystallographic methods. Compounds with the generic formula [Me3Si(L)][OTf] (L = 4-dmap, pyr, imz, OPMe3, OPCy3, OPPh3, OpyrMe, dmso, PMe3) were isolated from 1:1 mixtures of Me3SiOTf and the respective ligand in CH2Cl2. Characterization by NMR spectroscopy confirmed the solution stability of all but [Me3Si(PMe3)][OTf], with indications that the latter dissociates into PMe3 and Me3SiOTf. Solid-state structures of [Me3Si(4-dmap)][OTf], [Me3Si(pyr)][OTf], [Me3Si(OPCy3)][OTf], [Me3Si(OPPh3)][OTf], [Me3Si(OpyrMe)][OTf], and [Me3Si(PMe3)][OTf] were elucidated by single crystal X-ray diffraction, confirming the envisaged ionic formulations resulting from the displacement of the OTf anion from the silicon center of Me3SiOTf by the incoming ligand. Mixtures of Me3SiOTf with other related donors, including ChPPh3 (Ch = S or Se), NEt3, SMe2, PPh3, 2,2′-bipy, or Me2CO, show no evidence of reaction under ambient conditions, reflecting the lower basicity and (or) greater steric encumbrance of these ligands. Reactions of Me3SiOTf with bis-donor ligands yielded complexes of the generic formulae [Me3Si(L–L)SiMe3][OTf]2 (L–L = 4,4′-bipy, tmeda, dmpe) and [Me3Si(L–L)][OTf] (L–L = 4,4′-bipy, tmeda, dmpe). The tmeda and dmpe complexes, however, were found to dissociate in solution, with complexes only prevailing in the solid phase. X-ray diffraction studies of [Me3Si(4,4′-bipy)SiMe3][OTf]2 and [Me3Si(dmpe)SiMe3][OTf]2 confirmed the expected connectivities and ionic formulations, with Si–ligand bond lengths comparable to those observed in [Me3Si(pyr)][OTf] and [Me3Si(PMe3)][OTf], respectively.


Author(s):  
Olga Yakubovich ◽  
Galina Kiriukhina ◽  
Larisa Shvanskaya ◽  
Anatoliy Volkov ◽  
Olga Dimitrova

Two novel phases, potassium copper aluminium bis(phosphate), KCuAl[PO4]2 (I), and potassium zinc aluminium bis(phosphate-silicate), K(Al,Zn)2[(P,Si)O4]2 (II), were obtained in one hydrothermal synthesis experiment at 553 K. Their crystal structures have been studied using single-crystal X-ray diffraction. (I) is a new member of the A + M 2+ M 3+[PO4]2 family. Its open 3D framework built by AlO5 and PO4 polyhedra includes small channels populated by columns of CuO6 octahedra sharing edges, and large channels where K+ ions are deposited. It is assumed that the stability of this structure type is due to the pair substitution of Cu/Al with Ni/Fe, Co/Fe or Mg/Fe in different representatives of the series. From the KCuAl[PO4]2 structural features, one may suppose it is a potentially electrochemically active material and/or possible low-temperature antiferromagnet. In accordance with results obtained from X-ray diffraction data, using scanning electron microscopy, microprobe analysis and detailed crystal chemical observation, (II) is considered as a product of epitaxial intergrowth of phosphate KAlZn[PO4]2 and silicate KAlSi[SiO4]2 components having closely similar crystal structures. The assembly of `coherent intergrowth' is described in the framework of a single diffraction pattern.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2961 ◽  
Author(s):  
Aarti S. Bhatt ◽  
R. Ranjitha ◽  
M. S. Santosh ◽  
C. R. Ravikumar ◽  
S. C. Prashantha ◽  
...  

Nanostructured NiO and Li-ion doped NiO have been synthesized via a facile microwave technique and simulated using the first principle method. The effects of microwaves on the morphology of the nanostructures have been studied by Field Emission Spectroscopy. X-ray diffraction studies confirm the nanosize of the particles and favoured orientations along the (111), (200) and (220) planes revealing the cubic structure. The optical band gap decreases from 3.3 eV (pure NiO) to 3.17 eV (NiO doped with 1% Li). Further, computational simulations have been performed to understand the optical behaviour of the synthesized nanoparticles. The optical properties of the doped materials exhibit violet, blue and green emissions, as evaluated using photoluminescence (PL) spectroscopy. In the presence of Li-ions, NiO nanoparticles exhibit enhanced electrical capacities and better cyclability. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results show that with 1% Li as dopant, there is a marked improvement in the reversibility and the conductance value of NiO. The results are encouraging as the synthesized nanoparticles stand a better chance of being used as an active material for electrochromic, electro-optic and supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document