scholarly journals Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer

2019 ◽  
Vol 116 (37) ◽  
pp. 18571-18577 ◽  
Author(s):  
Keittisak Suwan ◽  
Teerapong Yata ◽  
Sajee Waramit ◽  
Justyna M. Przystal ◽  
Charlotte A. Stoneham ◽  
...  

Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage’s minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.

2016 ◽  
Vol 80 ◽  
pp. 68-77
Author(s):  
Yongjiao Yu ◽  
Lu Fu ◽  
Xiaoyu Jiang ◽  
Shanshan Guan ◽  
Ziyu Kuai ◽  
...  

2019 ◽  
Vol 30 (2) ◽  
pp. 35-43 ◽  
Author(s):  
Anita Kruzik ◽  
Herwig Koppensteiner ◽  
Damir Fetahagic ◽  
Bettina Hartlieb ◽  
Sebastian Dorn ◽  
...  

2018 ◽  
Vol 92 (20) ◽  
Author(s):  
April R. Giles ◽  
Lakshmanan Govindasamy ◽  
Suryanarayan Somanathan ◽  
James M. Wilson

ABSTRACTRecent clinical trials have demonstrated the potential of adeno-associated virus (AAV)-based vectors for treating rare diseases. However, significant barriers remain for the translation of these vectors into widely available therapies. In particular, exposure to the AAV capsid can generate an immune response of neutralizing antibodies. One approach to overcome this response is to map the AAV-specific neutralizing epitopes and rationally design an AAV capsid able to evade neutralization. To accomplish this, we isolated a monoclonal antibody against AAV9 following immunization of BALB/c mice and hybridoma screening. This antibody, PAV9.1, is specific for intact AAV9 capsids and has a high neutralizing titer of >1:160,000. We used cryo-electron microscopy to reconstruct PAV9.1 in complex with AAV9. We then mapped its epitope to the 3-fold axis of symmetry on the capsid, specifically to residues 496-NNN-498 and 588-QAQAQT-592. Capsid mutagenesis demonstrated that even a single amino acid substitution within this epitope markedly reduced binding and neutralization by PAV9.1. In addition,in vivostudies showed that mutations in the PAV9.1 epitope conferred a “liver-detargeting” phenotype to the mutant vectors, unlike AAV9, indicating that the residues involved in PAV9.1 interactions are also responsible for AAV9 tropism. However, we observed minimal changes in binding and neutralizing titer when we tested these mutant vectors for evasion of polyclonal sera from mice, macaques, or humans previously exposed to AAV. Taken together, these studies demonstrate the complexity of incorporating mapped neutralizing epitopes and previously identified functional motifs into the design of novel capsids able to evade immune response.IMPORTANCEGene therapy utilizing viral vectors has experienced recent success, culminating in U.S. Food and Drug Administration approval of the first adeno-associated virus vector gene therapy product in the United States: Luxturna for inherited retinal dystrophy. However, application of this approach to other tissues faces significant barriers. One challenge is the immune response to viral infection or vector administration, precluding patients from receiving an initial or readministered dose of vector, respectively. Here, we mapped the epitope of a novel neutralizing antibody generated in response to this viral vector to design a next-generation capsid to evade immune responses. Epitope-based mutations in the capsid interfered with the binding and neutralizing ability of the antibody but not when tested against polyclonal samples from various sources. Our results suggest that targeted mutation of a greater breadth of neutralizing epitopes will be required to evade the repertoire of neutralizing antibodies responsible for blocking viral vector transduction.


Author(s):  
Seyhan Boyoglu-Barnum ◽  
Daniel Ellis ◽  
Rebecca A. Gillespie ◽  
Geoffrey B. Hutchinson ◽  
Young-Jun Park ◽  
...  

AbstractInfluenza vaccines that confer broad and durable protection against diverse virus strains would have a major impact on global health. However, next-generation vaccine design efforts have been complicated by challenges including the genetic plasticity of the virus and the immunodominance of certain epitopes in its glycoprotein antigens. Here we show that computationally designed, two-component nanoparticle immunogens induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens display 20 hemagglutinin (HA) trimers in a highly immunogenic array, and their assembly in vitro enables precisely controlled co-display of multiple distinct HAs in defined ratios. Nanoparticle immunogens displaying the four HAs of licensed quadrivalent influenza vaccines (QIV) elicited hemagglutination inhibition and neutralizing antibody responses to vaccine-matched strains that were equivalent or superior to commercial QIV in mice, ferrets, and nonhuman primates. The nanoparticle immunogens—but not QIV—simultaneously induced broadly protective antibody responses to heterologous viruses, including H5N1 and H7N9, by targeting the subdominant yet conserved HA stem. Unlike previously reported influenza vaccine candidates, our nanoparticle immunogens can alter the intrinsic immunodominance hierarchy of HA to induce both potent receptor-blocking and broadly cross-reactive stem-directed antibody responses and are attractive candidates for a next-generation influenza vaccine that could replace current seasonal vaccines.One Sentence SummaryNanoparticle immunogens displaying four seasonal influenza hemagglutinins elicit neutralizing antibodies directed at both the immunodominant head and the conserved stem and confer broad protective immunity.


2018 ◽  
Vol 29 ◽  
pp. viii103
Author(s):  
J. Zimmermann ◽  
T. Remus ◽  
G. Lemercier ◽  
D. Barker ◽  
D. Obrecht ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 157
Author(s):  
Kinga Böszörményi ◽  
Janet Hirsch ◽  
Gwendoline Kiemenyi Kayere ◽  
Zahra Fagrouch ◽  
Nicole Heijmans ◽  
...  

Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Sign in / Sign up

Export Citation Format

Share Document