scholarly journals Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton

2019 ◽  
Vol 116 (35) ◽  
pp. 17323-17329 ◽  
Author(s):  
Silvia Zaoli ◽  
Andrea Giometto ◽  
Emilio Marañón ◽  
Stéphane Escrig ◽  
Anders Meibom ◽  
...  

Kleiber’s law describes the scaling of metabolic rate with body size across several orders of magnitude in size and across taxa and is widely regarded as a fundamental law in biology. The physiological origins of Kleiber’s law are still debated and generalizations of the law accounting for deviations from the scaling behavior have been proposed. Most theoretical and experimental studies of Kleiber’s law, however, have focused on the relationship between the average body size of a species and its mean metabolic rate, neglecting intraspecific variation of these 2 traits. Here, we propose a theoretical characterization of such variation and report on proof-of-concept experiments with freshwater phytoplankton supporting such framework. We performed joint measurements at the single-cell level of cell volume and nitrogen/carbon uptake rates, as proxies of metabolic rates, of 3 phytoplankton species using nanoscale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling. Common scaling features of the distribution of nutrient uptake rates and cell volume are found to hold across 3 orders of magnitude in cell size. Once individual measurements of cell volume and nutrient uptake rate within a species are appropriately rescaled by a function of the average cell volume within each species, we find that intraspecific distributions of cell volume and metabolic rates collapse onto a universal curve. Based on the experimental results, this work provides the building blocks for a generalized form of Kleiber’s law incorporating intraspecific, correlated variations of nutrient-uptake rates and body sizes.

1956 ◽  
Vol 186 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Max Kleiber ◽  
Arthur H. Smith ◽  
Theodore N. Chernikoff

On the basis of 926 respiration trials, metabolic rates of normal female rats are presented as means of 42 different age groups from birth to 1000 days of age. The means with their standard errors are given for the metabolic rates per rat, per kilogram weight, per unit of the 2/3 power of body weight (surface), and per unit of the 3/4 power of body weight (inter specific unit of metabolic body size). A minimum of 72.6 Cal/kg.3/4 occurs between the ages of 200 and 300 days. An equation with two exponentials predicts the metabolic rate of rats from 77–1000 days of age with a standard deviation between prediction and observation of 2.2% of the mean.


2011 ◽  
Vol 278 (1721) ◽  
pp. 3135-3141 ◽  
Author(s):  
Montserrat Gomendio ◽  
Maximiliano Tourmente ◽  
Eduardo R. S. Roldan

The hypothesis that sperm competition should favour increases in sperm size, because it results in faster swimming speeds, has received support from studies on many taxa, but remains contentious for mammals. We suggest that this may be because mammalian lineages respond differently to sexual selection, owing to major differences in body size, which are associated with differences in mass-specific metabolic rate. Recent evidence suggests that cellular metabolic rate also scales with body size, so that small mammals have cells that process energy and resources from the environment at a faster rate. We develop the ‘metabolic rate constraint hypothesis’ which proposes that low mass-specific metabolic rate among large mammals may limit their ability to respond to sexual selection by increasing sperm size, while this constraint does not exist among small mammals. Here we show that among rodents, which have high mass-specific metabolic rates, sperm size increases under sperm competition, reaching the longest sperm sizes found in eutherian mammals. By contrast, mammalian lineages with large body sizes have small sperm, and while metabolic rate (corrected for body size) influences sperm size, sperm competition levels do not. When all eutherian mammals are analysed jointly, our results suggest that as mass-specific metabolic rate increases, so does maximum sperm size. In addition, species with low mass-specific metabolic rates produce uniformly small sperm, while species with high mass-specific metabolic rates produce a wide range of sperm sizes. These findings support the hypothesis that mass-specific metabolic rates determine the budget available for sperm production: at high levels, sperm size increases in response to sexual selection, while low levels constrain the ability to respond to sexual selection by increasing sperm size. Thus, adaptive and costly traits, such as sperm size, may only evolve under sexual selection when metabolic rate does not constrain cellular budgets.


2014 ◽  
Author(s):  
James F Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes in aerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


Web Ecology ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Milad Shokri ◽  
Mario Ciotti ◽  
Fabio Vignes ◽  
Vojsava Gjoni ◽  
Alberto Basset

Abstract. Standard metabolic rate is a major functional trait with large inter-individual variability in many groups of aquatic species. Here we present results of an experimental study to address variation in standard metabolic rates, over different scales of organisation and environments, within a specific group of aquatic macro-invertebrates (i.e. gammarid amphipods) that represent the primary consumers in detritus food webs. The study was carried out using flow-through microrespirometric techniques on male specimens of three gammarid species from freshwater, transitional water and marine ecosystems. We examined individual metabolic rate variations at three scales: (1) at the individual level, during an 8 h period of daylight; (2) at the within-population level, along body-size and body-condition gradients; (3) at the interspecific level, across species occurring in the field in the three different categories of aquatic ecosystems, from freshwater to marine. We show that standard metabolic rates vary significantly at all three scales examined, with the highest variation observed at the within-population level. Variation in individual standard metabolic rates during the daylight hours was generally low (coefficient of variation, CV<10 %) and unrelated to time. The average within-population CV ranged between 30.0 % and 35.0 %, with body size representing a significant source of overall inter-individual variation in the three species and individual body condition exerting only a marginal influence. In all species, the allometric equations were not as steep as would be expected from the 3∕4 power law, with significant variation in mass-specific metabolic rates among populations. The population from the transitional water ecosystem had the highest mass-specific metabolic rates and the lowest within-population variation. In the gammarid species studied here, body-size-independent variations in standard individual metabolic rates were higher than those explained by allometric body size scaling, and the costs of adaptation to short-term periodic variations in water salinity in the studied ecosystems also seemed to represent a major source of variation.


2014 ◽  
Author(s):  
James F Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes in aerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


1983 ◽  
Vol 61 (2) ◽  
pp. 281-288 ◽  
Author(s):  
W. Richard Robinson ◽  
Robert Henry Peters ◽  
Jess Zimmermann

Multiple regression analyses of previously published data were performed to describe the effect of variations in body mass (M, in grams) and temperature (t, in degrees Celsius) on the rate of oxygen consumption ([Formula: see text], in millilitres O2 per gram per hour). For homeotherms and poikilotherms, the resultant equations describing standard metabolic rate are [Formula: see text] and [Formula: see text], respectively. The metabolic rate of unicells was described by [Formula: see text], although the temperature term was not statistically significant. When solved at 39 °C, the homeotherm equation is essentially similar to previously published relations. At 20 °C, the poikilotherm relation is slightly higher, and the unicell relation considerably lower, than Hemmingsen's widely cited relations. Enough data were available to provide a statistical description of active reptiles and fish: [Formula: see text]; this relationship may be used to approximate the metabolic rate of actively foraging fish and reptiles. Equations for the standard metabolic rate can serve as components in the calculation of minimal metabolic rates of homeotherms and higher poikilotherms in nature; such values could then be increased by estimates of the additional demands associated with movement, feeding, growth, etc. For unicells and lower vertebrates, standard rates also serve as estimates of free-living rates.


Author(s):  
James JF Gillooly

The tremendous variation in brain size among vertebrates has long been thought to be related to differences in species’ metabolic rates. Species with higher metabolic rates can supply more energy to support the relatively high cost of brain tissue. And yet, while body temperature is known to be a major determinant of metabolic rate, the possible effects of temperature on brain size have scarcely been explored. Thus, here I explore the effects of temperature on brain size among diverse vertebrates (fishes,amphibians, reptiles, birds and mammals). I find that, after controlling for body size,brain size increases exponentially with temperature in much the same way asmetabolic rate. These results suggest that temperature-dependent changes inaerobic capacity, which have long been known to affect physical performance, similarly affect brain size. The observed temperature-dependence of brain size may explain observed gradients in brain size among both ectotherms and endotherms across broad spatial and temporal scales.


2018 ◽  
Author(s):  
Albert Thommen ◽  
Steffen Werner ◽  
Olga Frank ◽  
Jenny Philipp ◽  
Oskar Knittelfelder ◽  
...  

2018 ◽  
Author(s):  
Jochen C. Rink ◽  
Albert Thommen ◽  
Steffen Werner ◽  
Olga Frank ◽  
Jenny Philipp ◽  
...  

AbstractKleiber’s law, or the ¾-power law scaling of the metabolic rate with body mass, is considered one of the few quantitative laws in biology, yet its physiological basis remains unknown. Here, we report Kleiber’s law scaling in the planarian Schmidtea mediterranea. Its reversible and life history-independent changes in adult body size over 2 orders of magnitude reveal that Kleiber’s law does not emerge from the size-dependent decrease in cellular metabolic rate, but from a size-dependent increase in mass per cell. Through a combination of experiment and theoretical analysis of the organismal energy balance, we further show that the mass allometry is caused by body size dependent energy storage. Our results reveal the physiological origins of Kleiber’s law in planarians and thus have general implications for understanding a fundamental scaling law in biology.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Albert Thommen ◽  
Steffen Werner ◽  
Olga Frank ◽  
Jenny Philipp ◽  
Oskar Knittelfelder ◽  
...  

Kleiber’s law, or the 3/4 -power law scaling of the metabolic rate with body mass, is considered one of the few quantitative laws in biology, yet its physiological basis remains unknown. Here, we report Kleiber’s law scaling in the planarian Schmidtea mediterranea. Its reversible and life history-independent changes in adult body mass over 3 orders of magnitude reveal that Kleiber’s law does not emerge from the size-dependent decrease in cellular metabolic rate, but from a size-dependent increase in mass per cell. Through a combination of experiment and theoretical analysis of the organismal energy balance, we further show that the mass allometry is caused by body size dependent energy storage. Our results reveal the physiological origins of Kleiber’s law in planarians and have general implications for understanding a fundamental scaling law in biology.


Sign in / Sign up

Export Citation Format

Share Document