scholarly journals Structural elements regulating the photochromicity in a cyanobacteriochrome

2020 ◽  
Vol 117 (5) ◽  
pp. 2432-2440 ◽  
Author(s):  
Xiuling Xu ◽  
Astrid Höppner ◽  
Christian Wiebeler ◽  
Kai-Hong Zhao ◽  
Igor Schapiro ◽  
...  

The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 (Synechocystis PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15-Z dark-adapted state, Pr, λmax = 649 nm, and 15-E photoproduct, Pg, λmax = 536 nm (resolution, 1.6 and 1.86 Å, respectively). The structural data allowed identifying the large spectral shift of the Pr-to-Pg conversion as resulting from an out-of-plane rotation of the chromophore’s peripheral rings and an outward movement of a short helix formed from a formerly unstructured loop. In addition, a third structure (2.1-Å resolution) starting from the photoproduct crystals allowed identification of elements that regulate the absorption maxima. In this peculiar form, generated during X-ray exposition, protein and chromophore conformation still resemble the photoproduct state, except for the D-ring already in 15-Z configuration and tilted out of plane akin the dark state. Due to its formation from the photoproduct, it might be considered an early conformational change initiating the parental state-recovering photocycle. The high quality and the distinct features of the three forms allowed for applying quantum-chemical calculations in the framework of multiscale modeling to rationalize the absorption maxima changes. A systematic analysis of the PCB chromophore in the presence and absence of the protein environment showed that the direct electrostatic effect is negligible on the spectral tuning. However, the protein forces the outer pyrrole rings of the chromophore to deviate from coplanarity, which is identified as the dominating factor for the color regulation.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5539
Author(s):  
Huiwen Chen ◽  
Yunlong Li ◽  
Dongfeng Xue

Two-dimensional organic–inorganic hybrid perovskites (2D OIHPs) have attracted extensive attention in the field of X-ray detection due to their excellent stability compared to traditional three-dimensional OIHPs and the strong optoelectronic response to X-ray along the quantum wells. In this review, the nucleation and growth process as well as intermolecular forces for controlling out-of-plane growth are summarized along with the oriented growth mechanism. The optoelectronic properties in 2D OIHP under irradiation of X-ray are also discussed. Finally, conclusions and outlook for orientation 2D OIHP quantum wells and their challenges in application of direct X-ray detection are given. This review will provide a basic understanding on the strategy of designing 2D OIHP thick films as promising X-ray photoconductors, which may inspire the development of next-generation X-ray detectors.


Author(s):  
Dan Holtstam ◽  
Cristian Biagioni ◽  
Ulf Hålenius

AbstractBrattforsite is an approved mineral (IMA2019-127), with ideal formula Mn19(AsO3)12Cl2. Associated minerals in the type specimen from the Brattfors mine, Nordmark (Värmland, Sweden) include jacobsite, alleghanyite, phlogopite, calcite and dolomite. Brattforsite, forming subhedral, mostly equant crystals up to 0.5 mm across, is orange to reddish-brown with a white streak, and translucent with a resinous to vitreous lustre. The fracture is uneven to subconchoidal, and no cleavage is observed. It is very weakly pleochroic in yellow, optically biaxial (–) with 2V = 44(5)° and has calculated mean refractive index of 1.981. Measured and calculated density values are 4.49(1) and 4.54(1) g·cm− 3, respectively. Chemical analyses yields (in wt%): MgO 0.62, CaO 1.26, MnO 48.66, FeO 0.13, As2O3 46.72, Cl 2.61, H2Ocalc 0.07, O ≡ Cl –0.59, sum 99.49, corresponding to the empirical formula (Mn17.67Ca0.58Mg0.40Fe0.05)∑18.70As12.17O35.90Cl1.90(OH)0.20, based on 38 (O + Cl + OH) atoms per formula unit. The five strongest Bragg peaks in the powder X-ray diffraction pattern are [d (Å), I (%), (hkl)]: 2.843,100, ($$ \overline{4} $$ 4 - 44); 2.828, 99, (444); 1.731, 32, (880); 2.448, 28, (800); 1.739, 25, (088). Brattforsite is monoclinic and pseudotetragonal, space group I2/a, with unit-cell parameters a = 19.5806(7), b = 19.5763(7), c = 19.7595(7) Å, β = 90.393(3)°, V = 7573.9(5) Å3 and Z = 8. The crystal structure was solved and refined to an R1 index of 3.4 % for 7445 reflections [Fo > 4σ(Fo)]. Brattforsite has the same overall structural topology as magnussonite (i.e., the species can be considered as homeotypic), but with 12 independent tetrahedrally coordinated As sites and 21 Mn sites with varying (4–8) coordination. The Mn-centered polyhedra, bonded through edge- and face-sharing, give rise to a three-dimensional framework. The (AsO3)3− groups are bonded to this framework through corner- and edge-sharing. Spectroscopic measurements (optical absorption, Raman, FTIR) carried out support the interpretation of the compositional and structural data.


2014 ◽  
Vol 70 (11) ◽  
pp. 2994-3012 ◽  
Author(s):  
Shifra Lansky ◽  
Rachel Salama ◽  
Hodaya V. Solomon ◽  
Hadar Feinberg ◽  
Hassan Belrhali ◽  
...  

L-Arabinose sugar residues are relatively abundant in plants and are found mainly in arabinan polysaccharides and in other arabinose-containing polysaccharides such as arabinoxylans and pectic arabinogalactans. The majority of the arabinose units in plants are present in the furanose form and only a small fraction of them are present in the pyranose form. The L-arabinan-utilization system inGeobacillus stearothermophilusT6, a Gram-positive thermophilic soil bacterium, has recently been characterized, and one of the key enzymes was found to be an intracellular β-L-arabinopyranosidase (Abp). Abp, a GH27 enzyme, was shown to remove β-L-arabinopyranose residues from synthetic substrates and from the native substrates sugar beet arabinan and larch arabinogalactan. The Abp monomer is made up of 448 amino acids, and based on sequence homology it was suggested that Asp197 is the catalytic nucleophile and Asp255 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Abp (at 2.28 Å resolution) and its catalytic mutant Abp-D197A with (at 2.20 Å resolution) and without (at 2.30 Å resolution) a bound L-arabinose product are reported as determined by X-ray crystallography. These structures demonstrate that the three-dimensional structure of the Abp monomer correlates with the general fold observed for GH27 proteins, consisting of two main domains: an N-terminal TIM-barrel domain and a C-terminal all-β domain. The two catalytic residues are located in the TIM-barrel domain, such that their carboxylic functional groups are about 5.9 Å from each other, consistent with a retaining mechanism. An isoleucine residue (Ile67) located at a key position in the active site is shown to play a critical role in the substrate specificity of Abp, providing a structural basis for the high preference of the enzyme towards arabinopyranoside over galactopyranoside substrates. The crystal structure demonstrates that Abp is a tetramer made up of two `open-pincers' dimers, which clamp around each other to form a central cavity. The four active sites of the Abp tetramer are situated on the inner surface of this cavity, all opening into the central space of the cavity. The biological relevance of this tetrameric structure is supported by independent results obtained from size-exclusion chromatography (SEC), dynamic light-scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. These data and their comparison to the structural data of related GH27 enzymes are used for a more general discussion concerning structure–selectivity aspects in this glycoside hydrolase (GH) family.


2012 ◽  
Vol 9 (75) ◽  
pp. 2563-2580 ◽  
Author(s):  
Vinodkumar Saranathan ◽  
Jason D. Forster ◽  
Heeso Noh ◽  
Seng-Fatt Liew ◽  
Simon G. J. Mochrie ◽  
...  

Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours . SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.


2020 ◽  
Vol 131 (2) ◽  
pp. 291-303
Author(s):  
Rachel Keeffe ◽  
David C Blackburn

Abstract Burrowing is one of the many locomotor modes of frogs (order Anura) and is found within many clades. Burrowing is generally categorized into two groups: forward-burrowing and backward-burrowing. While forward-burrowing is more rare than backward-burrowing, we show that it has evolved independently at least eight times across anurans and is correlated with distinct features of the external and internal anatomy. The shape of the humerus is especially important for forward-burrowing, as many species use their forelimbs for digging. Using X-ray computed tomography data, we characterize shape variation in the humerus, including three-dimensional (3D) morphometrics, assess the morphology of muscles related to this variation in the humerus, and discuss the mechanical and evolutionary consequences of our results. We show that the humeri of most forward-burrowing frogs are morphologically distinct from those of non-forward-burrowers, including features such as a curved and thick diaphysis, the presence of a pronounced ventral crest, and relatively large epicondyles and humeral head. Our findings also suggest that pectoral muscle anatomy differs substantially among burrowing modes in frogs. This work provides a framework for predicting locomotor modes in taxa for which the natural history is poorly known as well as extinct taxa.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


Sign in / Sign up

Export Citation Format

Share Document