scholarly journals Combinatorial interactions of the LEC1 transcription factor specify diverse developmental programs during soybean seed development

2019 ◽  
Vol 117 (2) ◽  
pp. 1223-1232 ◽  
Author(s):  
Leonardo Jo ◽  
Julie M. Pelletier ◽  
Ssu-Wei Hsu ◽  
Russell Baden ◽  
Robert B. Goldberg ◽  
...  

The LEAFY COTYLEDON1 (LEC1) transcription factor is a central regulator of seed development, because it controls diverse biological programs during seed development, such as embryo morphogenesis, photosynthesis, and seed maturation. To understand how LEC1 regulates different gene sets during development, we explored the possibility that LEC1 acts in combination with other transcription factors. We identified and compared genes that are directly transcriptionally regulated by ABA-RESPONSIVE ELEMENT BINDING PROTEIN3 (AREB3), BASIC LEUCINE ZIPPER67 (bZIP67), and ABA INSENSITIVE3 (ABI3) with those regulated by LEC1. We showed that LEC1 operates with specific sets of transcription factors to regulate different gene sets and, therefore, distinct developmental processes. Thus, LEC1 controls diverse processes through its combinatorial interactions with other transcription factors. DNA binding sites for the transcription factors are closely clustered in genomic regions upstream of target genes, defining cis-regulatory modules that are enriched for DNA sequence motifs that resemble sequences known to be bound by these transcription factors. Moreover, cis-regulatory modules for genes regulated by distinct transcription factor combinations are enriched for different sets of DNA motifs. Expression assays with embryo cells indicate that the enriched DNA motifs are functional cis elements that regulate transcription. Together, the results suggest that combinatorial interactions between LEC1 and other transcription factors are mediated by cis-regulatory modules containing clustered cis elements and by physical interactions that are documented to occur between the transcription factors.

2017 ◽  
Vol 114 (32) ◽  
pp. E6710-E6719 ◽  
Author(s):  
Julie M. Pelletier ◽  
Raymond W. Kwong ◽  
Soomin Park ◽  
Brandon H. Le ◽  
Russell Baden ◽  
...  

LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta. Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged ∼92 Mya.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 408 ◽  
Author(s):  
Jing-Yao Yu ◽  
Zhan-Guo Zhang ◽  
Shi-Yu Huang ◽  
Xue Han ◽  
Xin-Yu Wang ◽  
...  

Soybeans are an important cash crop and are widely used as a source of vegetable protein and edible oil. MicroRNAs (miRNA) are endogenous small RNA that play an important regulatory role in the evolutionarily conserved system of gene expression. In this study, we selected four lines with extreme phenotypes, as well as high or low protein and oil content, from the chromosome segment substitution line (CSSL) constructed from suinong (SN14) and ZYD00006, and planted and sampled at three stages of grain development for small RNA sequencing and expression analysis. The sequencing results revealed the expression pattern of miRNA in the materials, and predicted miRNA-targeted regulatory genes, including 1967 pairs of corresponding relationships between known-miRNA and their target genes, as well as 597 pairs of corresponding relationships between novel-miRNA and their target genes. After screening and annotating genes that were targeted for regulation, five specific genes were identified to be differentially expressed during seed development and subsequently analyzed for their regulatory relationship with miRNAs. The expression pattern of the targeted gene was verified by Real-time Quantitative PCR (RT-qPCR). Our research provides more information about the miRNA regulatory network in soybeans and further identifies useful genes that regulate storage during soy grain development, providing a theoretical basis for the regulation of soybean quality traits.


2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


2020 ◽  
Author(s):  
Pei-Suen Tsou ◽  
Pamela J. Palisoc ◽  
Mustafa Ali ◽  
Dinesh Khanna ◽  
Amr H Sawalha

AbstractSystemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by widespread fibrosis and vascular complications. We utilized an assay for genome-wide chromatin accessibility to examine the chromatin landscape and transcription factor footprints in both endothelial cells (ECs) and fibroblasts isolated from healthy controls and patients with diffuse cutaneous (dc) SSc. In both cell types, chromatin accessibility was significantly reduced in SSc patients compared to healthy controls. Genes annotated from differentially accessible chromatin regions were enriched in pathways and gene ontologies involved in the nervous system. In addition, our data revealed that chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. Significant elevation of SNAI2 and ETV2 levels in dcSSc ECs, and RUNX2 levels in dcSSc fibroblasts were confirmed. Further analysis of publicly available ETV2-target genes suggests that ETV2 may play a critical role in EC dysfunction in dcSSc. Our data, for the first time, uncovered the chromatin blueprint of dcSSc ECs and fibroblasts, and suggested that neural-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting these pathways and the key transcription factors identified might present novel therapeutic approaches for this disease.


2018 ◽  
Author(s):  
Matthias Riediger ◽  
Taro Kadowaki ◽  
Ryuta Nagayama ◽  
Jens Georg ◽  
Yukako Hihara ◽  
...  

ABSTRACTThe transcription factor RpaB regulates the expression of genes encoding photosynthesis-associated proteins during light acclimation. The binding site of RpaB is the HLR1 motif, a pair of imperfect octameric direct repeats, separated by two random nucleotides. Here, we used high-resolution mapping data of transcriptional start sites (TSSs) in the modelSynechocystissp. PCC 6803 in conjunction with the positional distribution of HLR1 sites for the global prediction of the RpaB regulon. The results demonstrate that RpaB regulates the expression of more than 150 promoters, driving the transcription of protein-coding and non-coding genes and antisense transcripts under low light and upon the shift to high light when DNA binding activity is lost. Transcriptional activation by RpaB is achieved when the HLR1 motif is located 66 to 45 nt upstream, repression occurs when it is close to or overlapping the TSS. Selected examples were validated by multiple experimental approaches, including chromatin affinity purification, reporter gene, northern hybridization and electrophoretic mobility shift assays. We found that RpaB controlsssr2016/pgr5, which is involved in cyclic electron flow and state transitions; six out of nine ferredoxins; three of four FtsH proteases;gcvP/slr0293, encoding a crucial photorespiratory protein; andnirAandisiAfor which we suggest cross-regulation with the transcription factors NtcA or FurA, respectively. In addition to photosynthetic gene functions, RpaB contributes to the control of genes affiliated with nitrogen assimilation, cofactor biosyntheses, the CRISPR system and the circadian clock, making it one of the most versatile regulators in cyanobacteria.Significance StatementRpaB is a transcription factor in cyanobacteria and in the chloroplasts of several lineages of eukaryotic algae. Like other important transcription factors, the gene encoding RpaB cannot be deleted, making the study of deletion mutants impossible. Based on a bioinformatic approach, we increased the number of known genes controlled by RpaB by a factor of 5. Depending on the distance to the TSS, RpaB mediates transcriptional activation or repression. The high number and functional diversity among its target genes and co-regulation with other transcriptional regulators characterize RpaB as a regulatory hub.


2019 ◽  
Author(s):  
Markus Nevil ◽  
Tyler J. Gibson ◽  
Constantine Bartolutti ◽  
Anusha Iyengar ◽  
Melissa M Harrison

AbstractThe dramatic changes in gene expression required for development necessitate the establishment of cis-regulatory modules defined by regions of accessible chromatin. Pioneer transcription factors have the unique property of binding closed chromatin and facilitating the establishment of these accessible regions. Nonetheless, much of how pioneer transcription factors coordinate changes in chromatin accessibility during development remains unknown. To determine whether pioneer-factor function is intrinsic to the protein or whether pioneering activity is developmentally modulated, we studied the highly conserved, essential transcription factor, Grainy head (Grh). Grh is expressed throughout Drosophila development and functions as a pioneer factor in the larvae. We demonstrated that Grh remains bound to condensed mitotic chromosomes, a property shared with other pioneer factors. By assaying chromatin accessibility in embryos lacking either maternal or zygotic Grh at three stages of development, we discovered that Grh is not required for chromatin accessibility in early embryogenesis, in contrast to its essential functions later in development. Our data reveal that the pioneering activity of Grh is temporally regulated and is likely influenced by additional factors expressed at a given developmental stage.


2018 ◽  
Author(s):  
Benjamin T. Donovan ◽  
Anh Huynh ◽  
David A. Ball ◽  
Michael G. Poirier ◽  
Daniel R. Larson ◽  
...  

SummaryTranscription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the transcription factor Gal4 with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell times sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model where multiple polymerases initiate during a burst as long as the transcription factor is bound to DNA, and a burst terminates upon transcription factor dissociation.


Sign in / Sign up

Export Citation Format

Share Document