scholarly journals Mapping proteome-wide targets of protein kinases in plant stress responses

2020 ◽  
Vol 117 (6) ◽  
pp. 3270-3280 ◽  
Author(s):  
Pengcheng Wang ◽  
Chuan-Chih Hsu ◽  
Yanyan Du ◽  
Peipei Zhu ◽  
Chunzhao Zhao ◽  
...  

Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein–protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.

1993 ◽  
Vol 13 (5) ◽  
pp. 2899-2908 ◽  
Author(s):  
A L Jackson ◽  
P M Pahl ◽  
K Harrison ◽  
J Rosamond ◽  
R A Sclafani

Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.


2005 ◽  
Vol 389 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Claire E. EYERS ◽  
Helen McNEILL ◽  
Axel KNEBEL ◽  
Nick MORRICE ◽  
Simon J. C. ARTHUR ◽  
...  

A protein expressed in immune cells and muscle was detected in muscle extracts as a substrate for several SAPKs (stress-activated protein kinases). It interacted specifically with the F-actin capping protein CapZ in splenocytes, and was therefore termed ‘CapZIP’ (CapZ-interacting protein). Human CapZIP was phosphorylated at Ser-179 and Ser-244 by MAPKAP-K2 (mitogen-activated protein kinase-activated protein kinase 2) or MAPKAP-K3 in vitro. Anisomycin induced the phosphorylation of CapZIP at Ser-179 in Jurkat cells, which was prevented by SB 203580, consistent with phosphorylation by MAPKAP-K2 and/or MAPKAP-K3. However, osmotic shock-induced phosphorylation of Ser-179 was unaffected by SB 203580. These and other results suggest that CapZIP is phosphorylated at Ser-179 in cells by MAPKAP-K2/MAPKAP-K3, and at least one other protein kinase. Stress-activated MAP kinase family members phosphorylated human CapZIP at many sites, including Ser-68, Ser-83, Ser-108 and Ser-216. Ser-108 became phosphorylated when Jurkat cells were exposed to osmotic shock, which was unaffected by SB 203580 and/or PD 184352, or in splenocytes from mice that do not express either SAPK3/p38γ or SAPK4/p38δ. Our results suggest that CapZIP may be phosphorylated by JNK (c-Jun N-terminal kinase), which phosphorylates CapZIP to >5 mol/mol within minutes in vitro. Osmotic shock or anisomycin triggered the dissociation of CapZIP from CapZ in Jurkat cells, suggesting that phosphorylation of CapZIP may regulate the ability of CapZ to remodel actin filament assembly in vivo.


2006 ◽  
Vol 401 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Gopal P. Sapkota ◽  
Lorna Cummings ◽  
Felicity S. Newell ◽  
Christopher Armstrong ◽  
Jennifer Bain ◽  
...  

Hormones and growth factors induce the activation of a number of protein kinases that belong to the AGC subfamily, including isoforms of PKA, protein kinase B (also known as Akt), PKC, S6K p70 (ribosomal S6 kinase), RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated protein kinase), which then mediate many of the physiological processes that are regulated by these extracellular agonists. It can be difficult to assess the individual functions of each AGC kinase because their substrate specificities are similar. Here we describe the small molecule BI-D1870, which inhibits RSK1, RSK2, RSK3 and RSK4 in vitro with an IC50 of 10–30 nM, but does not signi-ficantly inhibit ten other AGC kinase members and over 40 other protein kinases tested at 100-fold higher concentrations. BI-D1870 is cell permeant and prevents the RSK-mediated phorbol ester- and EGF (epidermal growth factor)-induced phosphoryl-ation of glycogen synthase kinase-3β and LKB1 in human embry-onic kidney 293 cells and Rat-2 cells. In contrast, BI-D1870 does not affect the agonist-triggered phosphorylation of substrates for six other AGC kinases. Moreover, BI-D1870 does not suppress the phorbol ester- or EGF-induced phosphorylation of CREB (cAMP-response-element-binding protein), consistent with the genetic evidence indicating that MSK, and not RSK, isoforms mediate the mitogen-induced phosphorylation of this transcription factor.


2021 ◽  
Author(s):  
Kyle W Bender ◽  
Daniel Couto ◽  
Yasuhiro Kadota ◽  
Alberto P Macho ◽  
Jan Sklenar ◽  
...  

Receptor kinases (RKs) play fundamental roles in extracellular sensing to regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) function primarily as peptide receptors that regulate myriad aspects of plant development and response to external stimuli. Extensive phosphorylation of LRR-RK cytoplasmic domains is among the earliest detectable responses following ligand perception, and reciprocal transphosphorylation between a receptor and its co-receptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model RK, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in anti-bacterial immunity. These results reveal a non-catalytic role for the EFR cytoplasmic domain in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RK complexes with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor which could initiate signaling in a feed-forward fashion either allosterically or through driving the dissociation of negative regulators of the complex.


2021 ◽  
Vol 22 (24) ◽  
pp. 13464
Author(s):  
Yun Song ◽  
Li Feng ◽  
Mohammed Abdul Muhsen Alyafei ◽  
Abdul Jaleel ◽  
Maozhi Ren

The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.


2005 ◽  
Vol 25 (16) ◽  
pp. 7239-7248 ◽  
Author(s):  
Yoshiaki Kamada ◽  
Yuko Fujioka ◽  
Nobuo N. Suzuki ◽  
Fuyuhiko Inagaki ◽  
Stephan Wullschleger ◽  
...  

ABSTRACT The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2D239A) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2 D239A also suppressed the lethality of tor2Δ cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Δ cells. In contrast, Ypk2D239A has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.


1996 ◽  
Vol 16 (12) ◽  
pp. 6687-6697 ◽  
Author(s):  
S Ludwig ◽  
K Engel ◽  
A Hoffmeyer ◽  
G Sithanandam ◽  
B Neufeld ◽  
...  

Recently we have identified a mitogen-activated protein kinase (MAPK)-activated protein kinase, named 3pK (G. Sithanandam, F. Latif, U. Smola, R. A. Bernal, F.-M. Duh, H. Li, I. Kuzmin, V. Wixler, L. Geil, S. Shresta, P. A. Lloyd, S. Bader, Y. Sekido, K. D. Tartof, V. I. Kashuba, E. R. Zabarovsky, M. Dean, G. Klein, B. Zbar, M. I. Lerman, J. D. Minna, U. R. Rapp, and A. Allikmets, Mol. Cell. Biol. 16:868-876, 1996). In vitro characterization of the kinase revealed that 3pK is activated by ERK. It was further shown that 3pK is phosphorylated in vivo after stimulation of cells with serum. However, the in vivo relevance of this observation in terms of involvement of the Raf/MEK/ERK cascade has not been established. Here we show that 3pK is activated in vivo by the growth inducers serum and tetradecanoyl phorbol acetate in promyelocytic HL60 cells and transiently transfected embryonic kidney 293 cells. Activation of 3pK was Raf dependent and was mediated by the Raf/MEK/ERK kinase cascade. 3pK was also shown to be activated after stress stimulation of cells. In vitro studies with recombinant proteins demonstrate that in addition to ERK, members of other subgroups of the MAPK family, namely, p38RK and Jun-N-terminal kinases/stress-activated protein kinases, were also able to phosphorylate and activate 3pK. Cotransfection experiments as well as the use of a specific inhibitor of p38RK showed that these in vitro upstream activators also function in vivo, identifying 3pK as the first kinase to be activated through all three MAPK cascades. Thus, 3pK is a novel convergence point of different MAPK pathways and could function as an integrative element of signaling in both mitogen and stress responses.


1996 ◽  
Vol 74 (4) ◽  
pp. 431-437 ◽  
Author(s):  
Marek Michalak ◽  
Susan Y. Fu ◽  
Rachel E. Milner ◽  
Jody L. Busaan ◽  
Jacqueline E. Hance

Dystrophin is a protein product of the gene responsible for Duchenne and Becker muscular dystrophy. The protein is localized to the inner surface of sarcolemma and is associated with a group of membrane (glyco)proteins. Dystrophin links cytoskeletal actins via the dystrophin-associated protein complex to extracellular matrix protein, laminin. This structural organization implicates the role of dystrophin in stabilizing the sarcolemma of muscle fibers. Precisely how dystrophin functions is far from clear. The presence of an array of isoforms of the C-terminal region of dystrophin suggests that dystrophin may have functions other than structural. In agreement, many potential phosphorylation sites are found in the C-terminal region of dystrophin, and the C-terminal region of dystrophin is phosphorylated both in vitro and in vivo by many protein kinases, including MAP kinase, p34cdc2 kinase, CaM kinase, and casein kinase, and is dephosphorylated by calcineurin. The C-terminal domain of dystrophin is also a substrate for hierarchical phosporylation by casein kinase-2 and GSK-3. These observations, in accordance with the finding that the cysteine-rich region binds to Ca2+, Zn2+, and calmodulin, suggest an active involvement of dystrophin in transducing signals across muscle sarcolemma. Phosphorylation–dephosphorylation of the C-terminal region of dystrophin may play a role in regulating dystrophin–protein interactions and (or) transducing signal from the extracellular matrix via the dystrophin molecule to the cytoskeleton.Key words: Duchenne muscular dystrophy, protein phosphorylation, protein kinases, calcineurin, cytoskeleton.


2004 ◽  
Vol 3 (5) ◽  
pp. 1147-1153 ◽  
Author(s):  
Kimberly A. Kafadar ◽  
Martha S. Cyert

ABSTRACT Calcineurin is a Ca2+/calmodulin-dependent protein phosphatase required for Saccharomyces cerevisiae to adapt to a variety of environmental stresses. Once activated, calcineurin dephosphorylates the Zn-finger transcription factor Crz1p/Tcn1p, causing it to accumulate in the nucleus where it activates gene expression. Here we show that cyclic AMP-dependent protein kinase A (PKA) phosphorylates and negatively regulates Crz1p activity by inhibiting its nuclear import. Activation of PKA in vivo decreases Crz1p-dependent transcription. PKA phosphorylates Crz1p in vitro, and we identify specific residues required for this phosphorylation, all of which reside in or adjacent to the nuclear localization signal. Mutation of these residues to alanine results in increased nuclear import of Crz1p and results in higher levels of both basal and Ca2+-induced Crz1p transcriptional activity. PKA regulates the general stress response in yeast and coordinates this response with nutrient availability. In contrast, calcineurin regulates the cellular response to a restricted set of environmental insults. Thus, these studies identify a specific biochemical mechanism through which the activities of multiple stress-activated signaling pathways are integrated in vivo.


2016 ◽  
Vol 27 (24) ◽  
pp. 3841-3854 ◽  
Author(s):  
Felicitas Rataj ◽  
Séverine Planel ◽  
Agnès Desroches-Castan ◽  
Juliette Le Douce ◽  
Khadija Lamribet ◽  
...  

TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3′-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein–protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.


Sign in / Sign up

Export Citation Format

Share Document