scholarly journals Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size

2020 ◽  
Vol 117 (35) ◽  
pp. 21022-21030 ◽  
Author(s):  
Hugo Gattuso ◽  
R. D. Levine ◽  
F. Remacle

Quantum parallelism can be implemented on a classical ensemble of discrete level quantum systems. The nanosystems are not quite identical, and the ensemble represents their individual variability. An underlying Lie algebraic theory is developed using the closure of the algebra to demonstrate the parallel information processing at the level of the ensemble. The ensemble is addressed by a sequence of laser pulses. In the Heisenberg picture of quantum dynamics the coherence between theNlevels of a given quantum system can be handled as an observable. Thereby there areN2logic variables perNlevel system. This is how massive parallelism is achieved in that there areN2potential outputs for a quantum system ofNlevels. The use of an ensemble allows simultaneous reading of such outputs. Due to size dispersion the expectation values of the observables can differ somewhat from system to system. We show that for a moderate variability of the systems one can average theN2expectation values over the ensemble while retaining closure and parallelism. This allows directly propagating in time the ensemble averaged values of the observables. Results of simulations of electronic excitonic dynamics in an ensemble of quantum dot (QD) dimers are presented. The QD size and interdot distance in the dimer are used to parametrize the Hamiltonian. The dimerNlevels include local and charge transfer excitons within each dimer. The well-studied physics of semiconducting QDs suggests that the dimer coherences can be probed at room temperature.

2020 ◽  
Author(s):  
Hugo Gattuso ◽  
Raphael D. Levine ◽  
Francoise Remacle

Quantum parallelism can be implemented on a classical ensemble of discrete level quantum systems. The nano systems are not quite identical and the ensemble represents their individual variability. An underlying Lie algebraic theory is developed using the closure of the algebra to demonstrate the parallel information processing at the level of the ensemble. The ensemble is addressed by a sequence of laser pulses. In the Heisenberg picture of quantum dynamics the coherence between the N levels of a given quantum system can be handled as an observable. Thereby there are N2 logic variables per N level system. This is how massive parallelism is achieved in that there are N2 potential outputs for a quantum system of N levels. The use of an ensemble allows simultaneous reading of such outputs. Due to size dispersion the expectation values of the observables can differ somewhat from system to system. We show that for a moderate variability of the systems one can average the N2 expectation values over the ensemble while retaining closure and parallelism. This allows directly propagating in time the ensemble averaged values of the observables. Results of simulations of electronic excitonic dynamics in an ensemble of quantum dot, QD, dimers are presented. The QD size and interdot distance in the dimer are used to parametrize the Hamiltonian. The dimer N levels include local and charge transfer excitons within each dimer. The well-studied physics of semi-conducting QDs suggests that the dimer coherences can be probed at room temperature


Author(s):  
Hugo Gattuso ◽  
Raphael D. Levine ◽  
Francoise Remacle

Quantum parallelism can be implemented on a classical ensemble of discrete level quantum systems. The nano systems are not quite identical and the ensemble represents their individual variability. An underlying Lie algebraic theory is developed using the closure of the algebra to demonstrate the parallel information processing at the level of the ensemble. The ensemble is addressed by a sequence of laser pulses. In the Heisenberg picture of quantum dynamics the coherence between the N levels of a given quantum system can be handled as an observable. Thereby there are N2 logic variables per N level system. This is how massive parallelism is achieved in that there are N2 potential outputs for a quantum system of N levels. The use of an ensemble allows simultaneous reading of such outputs. Due to size dispersion the expectation values of the observables can differ somewhat from system to system. We show that for a moderate variability of the systems one can average the N2 expectation values over the ensemble while retaining closure and parallelism. This allows directly propagating in time the ensemble averaged values of the observables. Results of simulations of electronic excitonic dynamics in an ensemble of quantum dot, QD, dimers are presented. The QD size and interdot distance in the dimer are used to parametrize the Hamiltonian. The dimer N levels include local and charge transfer excitons within each dimer. The well-studied physics of semi-conducting QDs suggests that the dimer coherences can be probed at room temperature


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. Eneriz ◽  
D. Z. Rossatto ◽  
F. A. Cárdenas-López ◽  
E. Solano ◽  
M. Sanz

AbstractWe introduce the concept of degree of quantumness in quantum synchronization, a measure of the quantum nature of synchronization in quantum systems. Following techniques from quantum information, we propose the number of non-commuting observables that synchronize as a measure of quantumness. This figure of merit is compatible with already existing synchronization measurements, and it captures different physical properties. We illustrate it in a quantum system consisting of two weakly interacting cavity-qubit systems, which are coupled via the exchange of bosonic excitations between the cavities. Moreover, we study the synchronization of the expectation values of the Pauli operators and we propose a feasible superconducting circuit setup. Finally, we discuss the degree of quantumness in the synchronization between two quantum van der Pol oscillators.


Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
Stefano Gherardini ◽  
Andrea Smirne ◽  
Matthias M. Müller ◽  
Filippo Caruso

Novel concepts, perspectives and challenges in measuring and controlling an open quantum system via sequential schemes are shown. We discuss how similar protocols, relying both on repeated quantum measurements and dynamical decoupling control pulses, can allow to: (i) Confine and protect quantum dynamics from decoherence in accordance with the Zeno physics. (ii) Analytically predict the probability that a quantum system is transferred into a target quantum state by means of stochastic sequential measurements. (iii) Optimally reconstruct the spectral density of environmental noise sources by orthogonalizing in the frequency domain the filter functions driving the designed quantum-sensor. The achievement of these tasks will enhance our capability to observe and manipulate open quantum systems, thus bringing advances to quantum science and technologies.


2005 ◽  
Vol 12 (01) ◽  
pp. 81-91 ◽  
Author(s):  
Mário Ziman ◽  
Peter Štelmachovič ◽  
Vladimír Bužek

Master equations in the Lindblad form describe evolution of open quantum systems that are completely positive and simultaneously have a semigroup property. We analyze the possibility to derive this type of master equations from an intrinsically discrete dynamics that is modelled as a sequence of collisions between a given quantum system (a qubit) with particles that form the environment. In order to illustrate our approach we analyze in detail how the process of an exponential decay and the process of decoherence can be derived from a collision-like model in which particular collisions are described by SWAP and controlled-NOT interactions, respectively.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1243-1269 ◽  
Author(s):  
Chenglong You ◽  
Apurv Chaitanya Nellikka ◽  
Israel De Leon ◽  
Omar S. Magaña-Loaiza

AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 205
Author(s):  
Dietrich Haase ◽  
Gunter Hermann ◽  
Jörn Manz ◽  
Vincent Pohl ◽  
Jean Christophe Tremblay

Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h and D4h of the nuclear scaffolds are conserved. At the same time, the symmetries of the one-electron densities are broken, however, to specific subgroups of G for the excited superposition states. These subgroups depend on the polarization and on the electric fields of the laser pulses. They can be determined either by inspection of the symmetry elements of the one-electron density which represents charge migration after the laser pulse, or by a new and more efficient group-theoretical approach. The results agree perfectly with each other. They suggest laser control of symmetry breaking. The choice of the target subgroup is restricted, however, by a new theorem, i.e., it must contain the symmetry group of the time-dependent electronic Hamiltonian of the oriented molecule interacting with the laser pulse(s). This theorem can also be applied to confirm or to falsify complementary suggestions of electron symmetry breaking by laser pulses.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Leontica ◽  
F. Tennie ◽  
T. Farrow

AbstractSimulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.


2013 ◽  
Vol 543 ◽  
pp. 381-384 ◽  
Author(s):  
Manabu Kanno ◽  
Hirohiko Koho ◽  
Hirobumi Mineo ◽  
Sheng Hsien Lin ◽  
Yuichi Fujimura

In recent years, laser control of electrons in molecular system and condensed matter has attracted considerable attention with rapid progress in laser science and technology [. In particular, control of π-electron rotation in photo-induced chiral aromatic molecules has potential utility to the next-generation ultrafast switching devices. In this paper, we present a fundamental principle of generation of ultrafast coherent ring currents and the control in photo-induced aromatic molecules. This is based on quantum dynamics simulations of π-electron rotations and preparation of unidirectional angular momentum by ultrashort UV laser pulses properly designed. For this purpose, we adopt 2,5-dichloro [(3,6) pyrazinophane (DCPH) fixed on a surface, which is a real chiral aromatic molecule with plane chirality. Here π electrons can be rotated along the aromatic ring clockwise or counterclockwise by irradiation of a linearly polarized laser pulse with the properly designed photon polarization direction and the coherent ring current with the definite direction along the aromatic ring is prepared. This is contrast to ordinary ring current in an achiral aromatic ring molecule with degenerate electronic excited state, which is prepared by a circularly polarized laser [2]. In this case, π electrons rotate along the Z-axis of the laboratory coordinates, while for the present case electrons rotate along the z-axis in molecular Cartesian coordinates. It should be noted that signals originated from the coherent ring currents prepared by linearly polarized ultrashort UV lasers are specific to the chiral molecule of interest.


Sign in / Sign up

Export Citation Format

Share Document