scholarly journals Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence

2021 ◽  
Vol 118 (28) ◽  
pp. e2024448118
Author(s):  
Hao-Ming Dong ◽  
Daniel S. Margulies ◽  
Xi-Nian Zuo ◽  
Avram J. Holmes

The transition from childhood to adolescence is marked by pronounced shifts in brain structure and function that coincide with the development of physical, cognitive, and social abilities. Prior work in adult populations has characterized the topographical organization of the cortex, revealing macroscale functional gradients that extend from unimodal (somatosensory/motor and visual) regions through the cortical association areas that underpin complex cognition in humans. However, the presence of these core functional gradients across development as well as their maturational course have yet to be established. Here, leveraging 378 resting-state functional MRI scans from 190 healthy individuals aged 6 to 17 y old, we demonstrate that the transition from childhood to adolescence is reflected in the gradual maturation of gradient patterns across the cortical sheet. In children, the overarching organizational gradient is anchored within the unimodal cortex, between somatosensory/motor and visual territories. Conversely, in adolescence, the principal gradient of connectivity transitions into an adult-like spatial framework, with the default network at the opposite end of a spectrum from primary sensory and motor regions. The observed gradient transitions are gradually refined with age, reaching a sharp inflection point in 13 and 14 y olds. Functional maturation was nonuniformly distributed across cortical networks. Unimodal networks reached their mature positions early in development, while association regions, in particular the medial prefrontal cortex, reached a later peak during adolescence. These data reveal age-dependent changes in the macroscale organization of the cortex and suggest the scheduled maturation of functional gradient patterns may be critically important for understanding how cognitive and behavioral capabilities are refined across development.

2018 ◽  
Author(s):  
Bonnie Alexander ◽  
Wai Yen Loh ◽  
Lillian G. Matthews ◽  
Andrea L. Murray ◽  
Chris Adamson ◽  
...  

AbstractOur recently published M-CRIB atlas comprises 100 neonatal brain regions including 68 compatible with the widely-used Desikan-Killiany adult cortical atlas. A successor to the Desikan-Killiany atlas is the Desikan-Killiany-Tourville atlas, in which some regions with unclear boundaries were removed, and many existing boundaries were revised to conform to clearer landmarks in sulcal fundi. Our first aim here was to modify cortical M-CRIB regions to comply with the Desikan-Killiany-Tourville protocol, in order to offer: a) compatibility with this adult cortical atlas, b) greater labelling accuracy due to clearer landmarks, and c) optimisation of cortical regions for integration with surface-based infant parcellation pipelines. Secondly, we aimed to update subcortical regions in order to offer greater compatibility with subcortical segmentations produced in FreeSurfer. Data utilized were the T2-weighted MRI scans in our M-CRIB atlas, for ten healthy neonates (postmenstrual age at MRI 40-43 weeks, 4 female), and corresponding parcellated images. Edits were performed on the parcellated images in volume space using ITK-SNAP. Cortical updates included deletion of frontal and temporal poles and ‘Banks STS’, and modification of boundaries of many other regions. Changes to subcortical regions included the addition of ‘ventral diencephalon’, and deletion of ‘subcortical matter’ labels. A detailed updated parcellation protocol was produced. The resulting whole-brain M-CRIB 2.0 atlas comprises 94 regions altogether. This atlas provides comparability with adult Desikan-Killiany-Tourville-labelled cortical data and FreeSurfer-labelled subcortical data, and is more readily adaptable for incorporation into surface-based neonatal parcellation pipelines. As such, it offers the ability to help facilitate a broad range of investigations into brain structure and function both at the neonatal time point and developmentally across the lifespan.


2020 ◽  
Author(s):  
Yun Wang ◽  
Fateme Sadat Haghpanah ◽  
Natalie Aw ◽  
Andrew Laine ◽  
Jonathan Posner

AbstractThe months between birth and age 2 are increasingly recognized as a period critical for neuro-development, with potentially life-long implications for cognitive functioning. However, little is known about the growth trajectories of brain structure and function across this time period. This is in large part because of insufficient approaches to analyze infant MRI scans at different months, especially brain segmentation. Addressing technical gaps in infant brain segmentation would significantly improve our capacity to efficiently measure and identify relevant infant brain structures and connectivity, and their role in long-term development. In this paper, we propose a transfer-learning approach based on convolutional neural network (CNN)-based image segmentation architecture, QuickNAT, to segment brain structures for newborns and 6-month infants separately. We pre-trained QuickNAT on auxiliary labels from a large-scale dataset, fine-tuned on manual labels, and then cross-validated the model’s performance on two separate datasets. Compared to other commonly used methods, our transfer-learning approach showed superior segmentation performance on both newborns and 6-month infants. Moreover, we demonstrated improved hippocampus segmentation performance via our approach in preterm infants.


2012 ◽  
Vol 15 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Kimberley A. Phillips ◽  
Jeffrey Rogers ◽  
Elizabeth A. Barrett ◽  
David C. Glahn ◽  
Peter Kochunov

The degree to which genes and environment determine variations in brain structure and function is fundamentally important to understanding normal and disease-related patterns of neural organization and activity. We studied genetic contributions to the midsagittal area of the corpus callosum (CC) in pedigreed baboons (68 males, 112 females) to replicate findings of high genetic contribution to that area of the CC reported in humans, and to determine if the heritability of the CC midsagittal area in adults was modulated by fetal development rate. Measurements of callosal area were obtained from high-resolution MRI scans. Heritability was estimated from pedigree-based maximum likelihood estimation of genetic and non-genetic variance components as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Our analyses revealed significant heritability for the total area of the CC and all of its subdivisions, with h2 = .46 for the total CC, and h2 = .54, .37, .62, .56, and .29 for genu, anterior midbody, medial midbody, posterior midbody and splenium, respectively. Genetic correlation analysis demonstrated that the individual subdivisions shared between 41% and 98% of genetic variability. Combined with previous research reporting high heritability of other brain structures in baboons, these results reveal a consistent pattern of high heritability for brain morphometric measures in baboons.


2019 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Emily L. Dennis ◽  
David F Tate

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium brings together researchers from around the world to try to identify the genetic underpinnings of brain structure and function, along with robust, generalizable effects of neurological and psychiatric disorders. The recently-formed ENIGMA Brain Injury working group includes 8 subgroups, based largely on injury mechanism and patient population. This introduction to the special issue summarizes the history, organization, and objectives of ENIGMA Brain Injury, and includes a discussion of strategies, challenges, opportunities and goals common across 6 of the subgroups under the umbrella of ENIGMA Brain Injury. The following articles in this special issue, including 6 articles from different subgroups, will detail the challenges and opportunities specific to each subgroup.


2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Kawaljit Kaur ◽  
Shahram Vaziri ◽  
Marcela Romero-Reyes ◽  
Avina Paranjpe ◽  
Anahid Jewett

Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.


2017 ◽  
Vol 49 (5S) ◽  
pp. 824 ◽  
Author(s):  
X. r. Tan ◽  
Ivan C. C. Low ◽  
Mary C. Stephenson ◽  
T. Kok ◽  
Heinrich W. Nolte ◽  
...  

2011 ◽  
Vol 32 (6) ◽  
pp. 814-822 ◽  
Author(s):  
Linda L. Chao ◽  
Linda Abadjian ◽  
Jennifer Hlavin ◽  
Deiter J. Meyerhoff ◽  
Michael W. Weiner

1995 ◽  
Vol 14 ◽  
pp. 37
Author(s):  
A. Spittler ◽  
R. Oehler ◽  
P. Götzinger ◽  
S. Winkler ◽  
G. Weigel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document