scholarly journals Structural basis of rotavirus RNA chaperone displacement and RNA annealing

2021 ◽  
Vol 118 (41) ◽  
pp. e2100198118
Author(s):  
Jack P. K. Bravo ◽  
Kira Bartnik ◽  
Luca Venditti ◽  
Julia Acker ◽  
Emma H. Gail ◽  
...  

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA–RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo–electron microscopy reconstructions of an NSP2–RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.

Author(s):  
Jack P. K. Bravo ◽  
Kira Bartnik ◽  
Luca Venditti ◽  
Emma H. Gail ◽  
Chen Davidovich ◽  
...  

AbstractRotavirus genomes are distributed between eleven distinct RNA molecules, all of which must be selectively co-packaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 auto-regulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, whilst accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch poised towards RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation whilst promoting inter-molecular RNA interactions may be a widespread strategy of RNA chaperone recycling.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009100 ◽  
Author(s):  
Dhurvas Chandrasekaran Dinesh ◽  
Dominika Chalupska ◽  
Jan Silhan ◽  
Eliska Koutna ◽  
Radim Nencka ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.


Author(s):  
Dhurvas Chandrasekaran Dinesh ◽  
Dominika Chalupska ◽  
Jan Silhan ◽  
Vaclav Veverka ◽  
Evzen Boura

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus disease 2019 (COVID-19) which is currently negatively affecting the population and disrupting the global economy. SARS-CoV-2 belongs to the +RNA virus family that utilize single-stranded positive-sense RNA molecules as genomes. SARS-CoV-2, like other coronaviruses, has an unusually large genome for a +RNA virus that encodes four structural proteins – the matrix (M), small envelope (E), spike (S) and nucleocapsid phosphoprotein (N) - and sixteen nonstructural proteins (nsp1-16) that together ensure replication of the virus in the host cell. The nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Its N-terminal RNA binding domain (N-NTD) captures the RNA genome while the C-terminal domain anchors the ribonucleoprotein complex to the viral membrane via its interaction with the M protein. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD lined with arginine residues suggesting a putative RNA binding site. Next, we performed an NMR titration experiment using an RNA duplex. The observed changes in positions of signals in the N-NTD NMR spectra allowed us to construct a model of the N-NTD in complex with RNA.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Fuzhou Ye ◽  
Ioly Kotta-Loizou ◽  
Milija Jovanovic ◽  
Xiaojiao Liu ◽  
David TF Dryden ◽  
...  

Bacteriophage T7 infects Escherichia coli and evades the host restriction/modification system. The Ocr protein of T7 was shown to exist as a dimer mimicking DNA and to bind to host restriction enzymes, thus preventing the degradation of the viral genome by the host. Here we report that Ocr can also inhibit host transcription by directly binding to bacterial RNA polymerase (RNAP) and competing with the recruitment of RNAP by sigma factors. Using cryo electron microscopy, we determined the structures of Ocr bound to RNAP. The structures show that an Ocr dimer binds to RNAP in the cleft, where key regions of sigma bind and where DNA resides during transcription synthesis, thus providing a structural basis for the transcription inhibition. Our results reveal the versatility of Ocr in interfering with host systems and suggest possible strategies that could be exploited in adopting DNA mimicry as a basis for forming novel antibiotics.


2021 ◽  
Vol 14 (7) ◽  
pp. 622
Author(s):  
Arne Krüger ◽  
Ana Paula de Jesus Santos ◽  
Vanessa de Sá ◽  
Henning Ulrich ◽  
Carsten Wrenger

Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4413
Author(s):  
Jung-Hoon Lee ◽  
Daniel Bollschweiler ◽  
Tillman Schäfer ◽  
Robert Huber

The chromatin-modifying histone deacetylases (HDACs) remove acetyl groups from acetyl-lysine residues in histone amino-terminal tails, thereby mediating transcriptional repression. Structural makeup and mechanisms by which multisubunit HDAC complexes recognize nucleosomes remain elusive. Our cryo–electron microscopy structures of the yeast class II HDAC ensembles show that the HDAC protomer comprises a triangle-shaped assembly of stoichiometry Hda12-Hda2-Hda3, in which the active sites of the Hda1 dimer are freely accessible. We also observe a tetramer of protomers, where the nucleosome binding modules are inaccessible. Structural analysis of the nucleosome-bound complexes indicates how positioning of Hda1 adjacent to histone H2B affords HDAC catalysis. Moreover, it reveals how an intricate network of multiple contacts between a dimer of protomers and the nucleosome creates a platform for expansion of the HDAC activities. Our study provides comprehensive insight into the structural plasticity of the HDAC complex and its functional mechanism of chromatin modification.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Tomáš Kouba ◽  
Jiří Pospíšil ◽  
Jarmila Hnilicová ◽  
Hana Šanderová ◽  
Ivan Barvík ◽  
...  

ABSTRACT Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP. IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.


2021 ◽  
Author(s):  
Xiaochen Chen ◽  
Lu Wang ◽  
Zhanyu Ding ◽  
Qianqian Cui ◽  
Li Han ◽  
...  

AbstractHuman calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and active states. Complemented with previously reported crystal structures of CaSR extracellular domains, it suggests that there are three distinct conformations: inactive, intermediate and active state during the activation. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data shows that the agonist binding leads to the compaction of the dimer, the proximity of the cysteine-rich domains, the large-scale transitions of 7-transmembrane domains, and the inter-and intrasubunit conformational changes of 7-transmembrane domains to accommodate the downstream transducers. Our results reveal the structural basis for activation mechanisms of the CaSR.


2014 ◽  
Vol 42 (13) ◽  
pp. 8705-8718 ◽  
Author(s):  
Fariha Khan ◽  
Mark A. Daniëls ◽  
Gert E. Folkers ◽  
Rolf Boelens ◽  
S. M. Saqlan Naqvi ◽  
...  

2018 ◽  
Vol 115 (27) ◽  
pp. 7039-7044 ◽  
Author(s):  
Kai Liang ◽  
Ningning Li ◽  
Xiao Wang ◽  
Jianye Dai ◽  
Pulan Liu ◽  
...  

The mitochondrial trifunctional protein (TFP) catalyzes three reactions in the fatty acid β-oxidation process. Mutations in the two TFP subunits cause mitochondrial trifunctional protein deficiency and acute fatty liver of pregnancy that can lead to death. Here we report a 4.2-Å cryo-electron microscopy α2β2 tetrameric structure of the human TFP. The tetramer has a V-shaped architecture that displays a distinct assembly compared with the bacterial TFPs. A concave surface of the TFP tetramer interacts with the detergent molecules in the structure, suggesting that this region is involved in associating with the membrane. Deletion of a helical hairpin in TFPβ decreases its binding to the liposomes in vitro and reduces its membrane targeting in cells. Our results provide the structural basis for TFP function and have important implications for fatty acid oxidation related diseases.


Sign in / Sign up

Export Citation Format

Share Document