scholarly journals A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons

2021 ◽  
Vol 118 (23) ◽  
pp. e2101486118
Author(s):  
Susanne S. Renner ◽  
Shan Wu ◽  
Oscar A. Pérez-Escobar ◽  
Martina V. Silber ◽  
Zhangjun Fei ◽  
...  

Wild relatives or progenitors of crops are important resources for breeding and for understanding domestication. Identifying them, however, is difficult because of extinction, hybridization, and the challenge of distinguishing them from feral forms. Here, we use collection-based systematics, iconography, and resequenced accessions of Citrullus lanatus and other species of Citrullus to search for the potential progenitor of the domesticated watermelon. A Sudanese form with nonbitter whitish pulp, known as the Kordofan melon (C. lanatus subsp. cordophanus), appears to be the closest relative of domesticated watermelons and a possible progenitor, consistent with newly interpreted Egyptian tomb paintings that suggest that the watermelon may have been consumed in the Nile Valley as a dessert by 4360 BP. To gain insights into the genetic changes that occurred from the progenitor to the domesticated watermelon, we assembled and annotated the genome of a Kordofan melon at the chromosome level, using a combination of Pacific Biosciences and Illumina sequencing as well as Hi-C mapping technologies. The genetic signature of bitterness loss is present in the Kordofan melon genome, but the red fruit flesh color only became fixed in the domesticated watermelon. We detected 15,824 genome structural variants (SVs) between the Kordofan melon and a typical modern cultivar, “97103,” and mapping the SVs in over 400 Citrullus accessions revealed shifts in allelic frequencies, suggesting that fruit sweetness has gradually increased over the course of watermelon domestication. That a likely progenitor of the watermelon still exists in Sudan has implications for targeted modern breeding efforts.

2020 ◽  
Author(s):  
Xin Wang ◽  
Lei Gao ◽  
Chen Jiao ◽  
Stefanos Stravoravdis ◽  
Prashant S. Hosmani ◽  
...  

AbstractSolanum pimpinellifolium (SP) is the wild progenitor of cultivated tomato. Because of its remarkable stress tolerance and intense flavor, SP has been used as an important germplasm donor in modern breeding of tomato. Here we present a high-quality chromosome-scale genome sequence of SP LA2093. Genome comparison identifies more than 92,000 high-confidence structural variants (SVs) between LA2093 and the modern cultivar, Heinz 1706. Genotyping these SVs in ~600 representative tomato accessions unravels alleles under selection during tomato domestication, improvement and modern breeding, and discovers numerous novel SVs underlying genes known to regulate important breeding traits such as fruit weight and lycopene content. Expression quantitative trait locus (eQTL) analysis detects hotspots harboring master regulators controlling important fruit quality traits, including cuticular wax accumulation and flavonoid biosynthesis, and novel SVs contributing to these complex regulatory networks. The LA2093 genome sequence and the identified SVs provide rich resources for future research and biodiversity-based breeding.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1125
Author(s):  
Saminathan Subburaj ◽  
Luhua Tu ◽  
Kayoun Lee ◽  
Gwang-Soo Park ◽  
Hyunbae Lee ◽  
...  

Watermelon (Citrullus lanatus) is an economically important fruit crop grown for consumption of its large edible fruit flesh. Pentatricopeptide-repeat (PPR) encoding genes, one of the large gene families in plants, are important RNA-binding proteins involved in the regulation of plant growth and development by influencing the expression of organellar mRNA transcripts. However, systematic information regarding the PPR gene family in watermelon remains largely unknown. In this comprehensive study, we identified and characterized a total of 422 C. lanatus PPR (ClaPPR) genes in the watermelon genome. Most ClaPPRs were intronless and were mapped across 12 chromosomes. Phylogenetic analysis showed that ClaPPR proteins could be divided into P and PLS subfamilies. Gene duplication analysis suggested that 11 pairs of segmentally duplicated genes existed. In-silico expression pattern analysis demonstrated that ClaPPRs may participate in the regulation of fruit development and ripening processes. Genotyping of 70 lines using 4 single nucleotide polymorphisms (SNPs) from 4 ClaPPRs resulted in match rates of over 0.87 for each validated SNPs in correlation with the unique phenotypes of flesh color, and could be used in differentiating red, yellow, or orange watermelons in breeding programs. Our results provide significant insights for a comprehensive understanding of PPR genes and recommend further studies on their roles in watermelon fruit growth and ripening, which could be utilized for cultivar development of watermelon.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 602d-602
Author(s):  
Warren R. Henderson ◽  
Gregory H. Scott ◽  
Todd C. Wehner

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] flesh color is controlled by several genes to produce red, canary yellow, salmon yellow, and orange. Our objective was to study the interaction of three gene loci with two or three alleles at each C (canary yellow vs. red), y (salmon yellow vs. red), yo (orange), and i (inhibitory to C permitting Y to produce red flesh color). Five crosses were used to study gene action: `Yellow Baby' × `Sweet Princess', `Yellow Baby' × `Tendersweet Orange Flesh', `Yellow Baby' × `Golden Honey', `Yellow Doll' × `Tendersweet Orange Flesh', and `Yellow Doll' × `Golden Honey'. Based on the performance of six generations (PA, PB, F1, F2, BC1A, and BC1B), the parents had the following genotypes: `Yellow Baby' = CCYYII, `Yellow Doll' = CCYYII, `Sweet Princess' = ccYY ii, `Tendersweet Orange Flesh' = ccyoyoII, and `Golden Honey' = ccyyII. Segregation of flesh colors in the progeny of the five families demonstrated that there was a multiple allelic series at the y locus, where YY (red) was dominant to yo yo (orange) and yy (yellow). Also, yoyo was dominant to yy. In conclusion, epistasis is involved in genes for the major flesh colors in watermelon, with ii inhibitory to CC (Canary), resulting in red flesh, and CC in the absence of ii epistatic to YY, producing canary flesh.


2001 ◽  
Vol 126 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Erik J. Sacks ◽  
David M. Francis

The genetic and environmental variation for flesh color of tomato (Lycopersicon esculentum Mill.) fruit was quantified using 41 red-fruited breeding lines, open-pollinated cultivars, and hybrids that are representative of the diversity of tomatoes grown for whole-peel processing in the midwestern and eastern United States and Ontario, Canada. Objective color measurements were made for 2 years from replicated experiments with 2 to 4 blocks per year. Genotypes differed significantly in lightness value (L*), saturation (chroma), and hue angle. Variation within fruit and among fruit in plots accounted for more than 75% of the environmental variation for the color traits. The crimson locus (ogc) accounted for less than one-third of the variation in fruit color among genotypic means, and explained 18% to 27% of the genotypic variation for L*, chroma, and hue. Estimates of variance components were used to develop sampling strategies for improving selection efficiency. Genotypes were identified that may be useful for studying genetic differences that lead to quantitative variation for fruit color in red-fruited populations of tomato.


2014 ◽  
Vol 46 (9) ◽  
pp. 1039-1040 ◽  
Author(s):  
Yinping Jiao ◽  
Hainan Zhao ◽  
Longhui Ren ◽  
Weibin Song ◽  
Biao Zeng ◽  
...  

2020 ◽  
Author(s):  
Pingli Yuan ◽  
Muhammad Jawad Umer ◽  
Nan He ◽  
Shengjie Zhao ◽  
Xuqiang Lu ◽  
...  

Abstract Background: Fruit flesh color in watermelon (Citrullus lanatus) is a great index for evaluation of the appearance quality and a key contributor influencing consumers preferences, but the molecular mechanisms of this intricate trait remain largely unknown. Here, the carotenoids and transcriptome dynamics during fruit development in watermelon cultivars with 5 different flesh colors were analyzed.Results: A total of 13 carotenoids and 16,781 differentially expressed genes (DEGs) including 1,295 transcription factors (TFs) were detected during the development of five watermelon genotypes. A number of structural genes and transcription factors were found to be involved in the carotenoid biosynthesis pathway using comparative transcriptome analysis. Furthermore, we performed weighted gene co-expression network analysis and predicted hub genes in 6 main modules determining carotenoids contents. Cla018406 (a Chaperone protein dnaJ-like protein) maybe a candidate gene for β-carotene and highly expressed in orange flesh colored fruit. Cla007686 (a zinc finger CCCH domain-containing protein) was highly expressed in the red color watermelon, maybe a key regulator for lycopene accumulation. Cla003760 (merbrane protein) and Cla007686 (photosystenI reaction center subunit II) are predicted to be hub genes and play an important role in yellow flesh color formation.Conclusions: These results provide an important resource for dissecting the molecular basis and candidate genes governing flesh color formation in watermelon fruit.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1428-1432 ◽  
Author(s):  
Cecilia E. McGregor ◽  
Vickie Waters

Crop wild relatives (CWRs) are important sources of variation for domesticated crops like watermelon (Citrullus lanatus) where cultivated varieties have a very narrow genetic base. The use of CWRs in plant breeding can be hampered by low fertility, chromosomal rearrangements, marker distortion, and linkage drag in the progeny. Pollen viability can be a quick and easy way to estimate male fertility, which can be a cause of marker distortion and an indicator of chromosomal rearrangements. Pollen viability was determined for F1 hybrids between cultivars and resistant citron and egusi types and the data were used to determine whether the parental cultivars/lines used or the directionality of the cross play a role in pollen viability. F1 hybrids between cultivars and the egusi type showed no reduction in pollen viability compared with parental lines, whereas pollen viability of hybrids with citron types varied between 61.8% and 91.7%. Significant main effects were observed for the cultivar and donor lines used, but the directionality of the cross did not affect pollen viability. F1 hybrids with ‘Crimson Sweet’ as the cultivar parent had significantly higher pollen viability than those with ‘Sugar Baby’ or ‘Charleston Gray’. Our results indicate that the directionality of the crosses between watermelon cultivars and infraspecific CWRs does not affect pollen viability but that the specific cultivars and donor lines used can have a significant effect. The high pollen viability of cultivar–egusi hybrids is supported by previous genetic data and strongly suggests that it should be easier to introgress traits from egusi types than citron types.


2021 ◽  
Author(s):  
Michiharu Nakano ◽  
Hideki Hirakawa ◽  
Eigo Fukai ◽  
Atsushi Toyoda ◽  
Rei Kajitani ◽  
...  

Chrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspread repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to a relatively large genome size. Furthermore, we identified aretrotransposon, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.


Sign in / Sign up

Export Citation Format

Share Document