scholarly journals COVID-19 lockdowns drive decline in active fires in southeastern United States

2021 ◽  
Vol 118 (43) ◽  
pp. e2105666118
Author(s):  
Benjamin Poulter ◽  
Patrick H. Freeborn ◽  
W. Matt Jolly ◽  
J. Morgan Varner

Fire is a common ecosystem process in forests and grasslands worldwide. Increasingly, ignitions are controlled by human activities either through suppression of wildfires or intentional ignition of prescribed fires. The southeastern United States leads the nation in prescribed fire, burning ca. 80% of the country’s extent annually. The COVID-19 pandemic radically changed human behavior as workplaces implemented social-distancing guidelines and provided an opportunity to evaluate relationships between humans and fire as fire management plans were postponed or cancelled. Using active fire data from satellite-based observations, we found that in the southeastern United States, COVID-19 led to a 21% reduction in fire activity compared to the 2003 to 2019 average. The reduction was more pronounced for federally managed lands, up to 41% below average compared to the past 20 y (38% below average compared to the past decade). Declines in fire activity were partly affected by an unusually wet February before the COVID-19 shutdown began in mid-March 2020. Despite the wet spring, the predicted number of active fire detections was still lower than expected, confirming a COVID-19 signal on ignitions. In addition, prescribed fire management statistics reported by US federal agencies confirmed the satellite observations and showed that, following the wet February and before the mid-March COVID-19 shutdown, cumulative burned area was approaching record highs across the region. With fire return intervals in the southeastern United States as frequent as 1 to 2 y, COVID-19 fire impacts will contribute to an increasing backlog in necessary fire management activities, affecting biodiversity and future fire danger.

2012 ◽  
Vol 21 (4) ◽  
pp. 328 ◽  
Author(s):  
Steen Magnussen ◽  
Stephen W. Taylor

Year-to-year variation in fire activity in Canada constitutes a key challenge for fire management agencies. Interagency sharing of fire management resources has been ongoing on regional, national and international scales in Canada for several decades to better cope with peaks in resource demand. Inherent stressors on these schemes determined by the fire regimes in constituent jurisdictions are not well known, nor described by averages. We developed a statistical framework to examine the likelihood of regional synchrony of peaks in fire activity at a timescale of 1 week. Year-to-year variations in important fire regime variables and 48 regions in Canada are quantified by a joint distribution and profiled at the Provincial or Territorial level. The fire regime variables capture the timing of the fire season, the average number of fires, area burned, and the timing and extent of annual maxima. The onset of the fire season was strongly correlated with latitude and longitude. Regional synchrony in the timing of the maximum burned area within fire seasons delineates opportunities for and limitations to sharing of fire suppression resources during periods of stress that were quantified in Monte Carlo simulations from the joint distribution.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
David S. Mason ◽  
Marcus A. Lashley

AbstractThe idea that not all fire regimes are created equal is a central theme in fire research and conservation. Fire frequency (i.e., temporal scale) is likely the most studied fire regime attribute as it relates to conservation of fire-adapted ecosystems. Generally, research converges on fire frequency as the primary filter in plant community assembly and structure, which is often critical to conservation goals. Thus, conservation success is commonly linked to fire frequency in fire regimes.The spatial scale of fire may also be vital to conservation outcomes, but this attribute is underrepresented in the primary literature. In our global, contemporary literature search, we found 37 published syntheses concerning the effects of prescribed fire in conservation over the last decade. In those syntheses, only 16% included studies that reported data-based inferences related to the spatial scale of the fire, whereas 73% included discussion of empirical studies on the temporal scale. Only one of the syntheses discussed studies that explicitly tested the effects of spatial extent, and none of those studies were experiments manipulating spatial scale. Further, understanding spatial-scale-dependent patterns may be relevant because two databases of fire-occurrence data from the United States indicated that spatial scale among lightning-ignited and prescribed fires may have been mismatched over the past few decades.Based on a rich ecological literature base that demonstrates pervasive scale-dependent effects in ecology, spatial-scale-dependent relationships among prescribed fire regimes and conservation outcomes are likely. Using examples from the southeastern United States, we explored the potential for scale-dependent ecological effects of fire. In particular, we highlighted the potential for spatial scale to (a) influence wildlife populations by manipulating the dispersion of habitat components, and (b) modulate plant community assembly and structure by affecting seed dispersal mechanics and spatial patterns in herbivory. Because spatial-scale-dependent outcomes are understudied but likely occurring, we encourage researchers to address the ecological effects of spatial scale in prescribed-fire regimes using comparative and manipulative approaches.


2013 ◽  
Vol 22 (6) ◽  
pp. 822 ◽  
Author(s):  
Christine S. Olsen ◽  
Emily Sharp

As a result of the increasing environmental and social costs of wildfire, fire management agencies face ever-growing complexity in their management decisions and interactions with the public. The success of these interactions with community members may be facilitated through building community–agency trust in the process of providing public input opportunities and community engagement and education activities. Without trust, the public may become frustrated in their interactions with the agency and withhold support for management decisions. This study takes a comparative case approach using interview data from communities near the King Valley fires in Victoria, Australia, and the Bear & Booth Complex fires in Oregon, USA. Several themes emerge that are common to both sites, including components of trustworthiness and actions or activities that contribute to a trusting relationship or environment. Key findings suggest trust and trustworthiness can be addressed interpersonally and institutionally and that flexible policies are important for implementation of locally appropriate outreach and management plans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


Fire ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 26
Author(s):  
Casey Teske ◽  
Melanie K. Vanderhoof ◽  
Todd J. Hawbaker ◽  
Joe Noble ◽  
John Kevin Hiers

Development of comprehensive spatially explicit fire occurrence data remains one of the most critical needs for fire managers globally, and especially for conservation across the southeastern United States. Not only are many endangered species and ecosystems in that region reliant on frequent fire, but fire risk analysis, prescribed fire planning, and fire behavior modeling are sensitive to fire history due to the long growing season and high vegetation productivity. Spatial data that map burned areas over time provide critical information for evaluating management successes. However, existing fire data have undocumented shortcomings that limit their use when detailing the effectiveness of fire management at state and regional scales. Here, we assessed information in existing fire datasets for Florida and the Landsat Burned Area products based on input from the fire management community. We considered the potential of different datasets to track the spatial extents of fires and derive fire history metrics (e.g., time since last burn, fire frequency, and seasonality). We found that burned areas generated by applying a 90% threshold to the Landsat burn probability product matched patterns recorded and observed by fire managers at three pilot areas. We then created fire history metrics for the entire state from the modified Landsat Burned Area product. Finally, to show their potential application for conservation management, we compared fire history metrics across ownerships for natural pinelands, where prescribed fire is frequently applied. Implications of this effort include increased awareness around conservation and fire management planning efforts and an extension of derivative products regionally or globally.


Author(s):  
Rebecca Saunders

Freshwater and estuarine shellfish began to be exploited in the southeastern United States between 9000 and 7000 b.p. Shortly thereafter, shell mounds appeared in the mid-South Shell Mound Archaic, along the St. Johns River in peninsular Florida, and, somewhat later, in the Stallings Island area along the middle Savannah River. On the lower Atlantic and Gulf Coasts, shell rings arose. Until recently, all these mounds were considered middens—the accumulations of the remains of simple meals of mobile peoples who visited the same areas for hundreds or thousands of years. More recent scholarship indicates that these mounds were deliberate constructions—some of the first sculpted landscapes created by Archaic peoples to memorialize the past, celebrate the present, and provide for the future. In this chapter, recent research on shell sites in these four areas is discussed. The emphasis is on changing perspectives about the peoples who built them.


2012 ◽  
Vol 273 ◽  
pp. 43-49 ◽  
Author(s):  
LaWen T. Hollingsworth ◽  
Laurie L. Kurth ◽  
Bernard R. Parresol ◽  
Roger D. Ottmar ◽  
Susan J. Prichard

2012 ◽  
Vol 21 (3) ◽  
pp. 210 ◽  
Author(s):  
Lenya N. Quinn-Davidson ◽  
J. Morgan Varner

Though the need for prescribed fire is widely recognised, its use remains subject to a range of operational and social constraints. Research has focussed on identifying these constraints, yet past efforts have focussed disproportionately on single agencies and geographic regions. We examined constraints on prescribed fire by surveying a wide variety of organisations (including six state and federal agencies and several tribes, non-governmental organisations and timber companies) in northern California, a fire-prone region of the western United States. Across the region, prescribed burning annually covered only 38% of the area needed to fulfil land-management objectives, and 66% of managers indicated dissatisfaction with levels of prescribed fire activity. The highest-ranked impediments were narrow burn window, regulations, lack of adequate personnel and environmental laws. Impediment ratings differed among entities, with legal and social impediments of greater concern in the private sector than in the public, and economic impediments of greater concern in the state and private sectors than in the federal. Comparisons with the south-eastern United States, where similar research has taken place, point to important regional constraints on prescribed fire activity. These findings suggest further need for research spanning geographic and ownership boundaries, as prescribed fire impediments can vary by context.


Author(s):  
Jack B. Martin

The Muskogean languages are a family of languages indigenous to the southeastern United States. Members of the family include Chickasaw, Choctaw, Alabama, Koasati, Apalachee, Hitchiti-Mikasuki, and Muskogee (Creek). The trade language Mobilian Jargon is based on Muskogean vocabulary and grammar. The Muskogean languages all have SOV word order. Noun phrases are marked for subject or non-subject case. Alienable and inalienable possession is marked on possessed nouns. Agreement on verbs for subjects and objects is sensitive to agency. The languages have grammatical tone (used to indicate verbal aspect) and switch reference. Several of the languages have measured tense systems (indicating several degrees of distance in the past).


2020 ◽  
Author(s):  
Lei Fang ◽  
Zeyu Qiao ◽  
Jian Yang

<p>Forest fire is a natural disaster threatening global human well-beings as well as a crucial disturbance agent driving forest landscape changes. The remotely sensed burned area (BA) products can provide spatially and temporally continuous monitoring of global fires, but the accuracies remain to be improved. We firstly developed a hybrid burned area mapping approach, which integrated the advantages of a 250 m global BA product (CCI_Fire) and a 30 m global forest change (GFC) product, to generate an improved 250 m BA product (so-called CCI_GFC product). Based on 248 fire patches derived from Landsat imagery, the results showed that the CCI_GFC product improved the CCI_Fire product substantially, which are significantly better than MCD64A1 product. According to the CCI_GFC, we found the total BA in the past 17 years was about 12.1 million ha in China, which approximately covered 6.1% of the total forested areas with a significantly decreased trend through Mann-Kendall test (Tau= -0.47, P<0.05) . We conducted a grid analysis (0.05°×0.05°) to determine the hot spots of forest fire from 2001 to 2017. We also quantified fire characteristics on frequency, spatial distribution, and seasonality in terms of Burned Forest Rate (BFR), hot spot areas, and fire seasons, respectively. We found that low frequency burns with a 0<BFR≤20% in 17 years covered 64% of total grids; the medium-low frequency burns (20%<BFR≤40%), the medium frequency burns (40%<BFR≤60%), the medium-high frequency burns (60%< BFR≤80%) accounted for 15%, 7%, 4% respectively; the high frequency burns (80%<BFR≤100%) and extremely high burns (100%<BFR≤120%) together occupy 10% of total grids which mainly distributed in Xiao Hinggan mountains, south China, and southwest China. The seasonality of forest fires differed substantially among eco-regions. The fire seasons of two temperate forest eco-regions are spring and autumn. The two peak fire months are May and October, in which about 22% and 37% of the total burned area were founded respectively. As a comparison, fire seasons in tropical and subtropical eco-regions are spring and winter (i.e., November to March of the next year), which accounted 88% of the total burned area. Our study clearly illustrated the characteristics of forest fire patterns in the past 17 years, which highlighted the remarkable achievements due to a nationwide implementation of fire prevention policy. At the same time, we emphasized that it is critically important to regard the long-term forest fire dynamics to design scientific and reasonable strategies or methods for fire management and controlling, which will be of sound significance to optimize the allocation of financial resources on fire management, and to achieve sustainable management of forests.</p>


Sign in / Sign up

Export Citation Format

Share Document