scholarly journals Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles

1997 ◽  
Vol 94 (12) ◽  
pp. 6529-6534 ◽  
Author(s):  
K. A. Dora ◽  
M. P. Doyle ◽  
B. R. Duling
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph A. Jude ◽  
Mythili Dileepan ◽  
Reynold A. Panettieri ◽  
Timothy F. Walseth ◽  
Mathur S. Kannan

CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implicated in asthma upregulate CD38 expression and increase the calcium responses to contractile agonists in airway smooth muscle cells. The augmented intracellular calcium responses following cytokine exposure of airway smooth muscle cells are inhibited by an antagonist of cyclic ADP-ribose. Airway smooth muscle cells from CD38 knockout mice exhibit attenuated intracellular calcium responses to agonists, and these mice have reduced airway response to inhaled methacholine. CD38 also contributes to airway hyperresponsiveness as shown in mouse models of allergen or cytokine-induced inflammatory airway disease. In airway smooth muscle cells obtained from asthmatics, the cytokine-induced CD38 expression is significantly enhanced compared to expression in cells from nonasthmatics. This differential induction of CD38 expression in asthmatic airway smooth muscle cells stems from increased activation of MAP kinases and transcription through NF-κB, and altered post-transcriptional regulation through microRNAs. We propose that increased capacity for CD38 signaling in airway smooth muscle in asthma contributes to airway hyperresponsiveness.


2005 ◽  
Vol 83 (10) ◽  
pp. 941-951 ◽  
Author(s):  
N L Stephens ◽  
A Fust ◽  
H Jiang ◽  
W Li ◽  
X Ma

Smooth muscle relaxation has most often been studied in isometric mode. However, this only tells us about the stiffness properties of the bronchial wall and thus only about wall capacitative properties. It tells us little about airflow. To study the latter, which of course is the meaningful parameter in regulation of ventilation and in asthma, we studied isotonic shortening of bronchial smooth muscle (BSM) strips. Failure of BSM to relax could be another important factor in maintaining high airway resistance. To analyze relaxation curves, we developed an index of isotonic relaxation, t1/2(P, lCE), which is the half-time for relaxation that is independent of muscle load (P) and of initial contractile element length (lCE). This index was measured in curves of relaxation initiated at 2 s (normally cycling crossbridges) and at 10 s (latch-bridges). At 10 s no difference was seen for adjusted t1/2(P, lCE) between curves obtained from control and sensitized BSM, (8.38 ± 0.92 s vs. 7.78 ± 0.93 s, respectively). At 2 s the half-time was almost doubled in the sensitized BSM (6.98 ± 0.01 s (control) vs. 12.74 ± 2.5 s (sensitized)). Thus, changes in isotonic relaxation are only seen during early contraction. Using zero load clamps, we monitored the time course of velocity during relaxation and noted that it varied according to 3 phases. The first phase (phase i) immediately followed cessation of electrical field stimulation (EFS) at 10 s and showed almost the same velocity as during the latter 1/3 of shortening; the second phase (phase ii) was linear in shape and is associated with zero load velocity, we speculate it could stem from elastic recoil of the cells' internal resistor; and the third phase (phase iii) was convex downwards. The zero load velocities in phase iii showed a surprising spontaneous increase suggesting reactivation of the muscle. Measurements of intracellular calcium (Fura-2 study) and of phosphorylation of the 20 kDa myosin light chain showed simultaneous increments, indicating phase iii represented an active process. Studies are under way to determine what changes occur in these 3 phases in a sensitized muscle. And of course, in the context of this conference, just what role the plastic properties of the muscle play in relaxation requires serious consideration.Key words: airway smooth muscle, sensitized smooth muscle, isotonic relaxation, intracellular calcium transients, myosin light chain (20 kDa) phosphorylation.


1992 ◽  
Vol 125 (2) ◽  
Author(s):  
EmeranA. Mayer ◽  
Anatoly Kodner ◽  
XiaoPing Sun ◽  
Jonathan Wilkes ◽  
David Scott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document