scholarly journals Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide 5′-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.

2010 ◽  
Vol 285 (5) ◽  
pp. 3524.1-3524
Author(s):  
Katrina L. Bogan ◽  
Charles Evans ◽  
Peter Belenky ◽  
Peng Song ◽  
Charles F. Burant ◽  
...  
1970 ◽  
Vol 48 (12) ◽  
pp. 2267-2278 ◽  
Author(s):  
H. R. Godavari ◽  
E. R. Waygood

Leaves of wheat (Triticum aestivum L. var. Selkirk) were incubated with nicotinic acid-7-14C and nicotinamide-7-14C for varying time periods from 5 min to 12 h. Aliquots of alcoholic extracts of leaves were subjected to paper chromatography and radioautography to isolate the intermediates of the synthesis and breakdown of nicotinamide adenine dinucleotide. Nine compounds were isolated quantitatively and identified as intermediates in the pathway of NAD metabolism. All the intermediates were labeled rapidly and the rapidity of labeling became a problem in rigorously proving the sequential operation of the pathway. The results indicate that the Preiss-Handler pathway: nicotinic acid→nicotinic acid mononucleotide→nicotinic acid adenine dinucleotide→NAD operates in wheat leaves. The degradation of NAD proceeded from NAD→nicotinamide mononucleotide→nicotinamide riboside→nicotinamide. Deamidation of the nicotinamide to nicotinic acid initiated a fresh cycle of biosynthesis. The total radioactivity recovered in the intermediates indicates that no measurable amount was lost to other metabolic pathways. Nicotinamide is recovered without significant loss and recycled. The rapid appearance of labeled nicotinamide indicates a possible interconversion of nicotinic acid and nicotinamide. About 80% of the radioactivity accumulated was present in trigonelline which is considered, on the basis of other evidence, to be a non-toxic form of nicotinic acid. Benzimidazole treatment of the leaves increased the incorporation of 14C into NADP.


Metabolites ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 293 ◽  
Author(s):  
Veronika Kulikova ◽  
Konstantin Shabalin ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide adenine dinucleotide (NAD) is an essential redox carrier, whereas its degradation is a key element of important signaling pathways. Human cells replenish their NAD contents through NAD biosynthesis from extracellular precursors. These precursors encompass bases nicotinamide (Nam) and nicotinic acid and their corresponding nucleosides nicotinamide riboside (NR) and nicotinic acid riboside (NAR), now collectively referred to as vitamin B3. In addition, extracellular NAD+ and nicotinamide mononucleotide (NMN), and potentially their deamidated counterparts, nicotinic acid adenine dinucleotide (NAAD) and nicotinic acid mononucleotide (NAMN), may serve as precursors of intracellular NAD. However, it is still debated whether nucleotides enter cells directly or whether they are converted to nucleosides and bases prior to uptake into cells. Here, we studied the metabolism of extracellular NAD+ and its derivatives in human HEK293 cells using normal and serum-free culture medium. Using medium containing 10% fetal bovine serum (FBS), mono- and dinucleotides were degraded to the corresponding nucleosides. In turn, the nucleosides were cleaved to their corresponding bases. Degradation was also observed in culture medium alone, in the absence of cells, indicating that FBS contains enzymatic activities which degrade NAD+ intermediates. Surprisingly, NR was also rather efficiently hydrolyzed to Nam in the absence of FBS. When cultivated in serum-free medium, HEK293 cells efficiently cleaved NAD+ and NAAD to NMN and NAMN. NMN exhibited rather high stability in cell culture, but was partially metabolized to NR. Using pharmacological inhibitors of plasma membrane transporters, we also showed that extracellular cleavage of NAD+ and NMN to NR is a prerequisite for using these nucleotides to maintain intracellular NAD contents. We also present evidence that, besides spontaneous hydrolysis, NR is intensively metabolized in cell culture by intracellular conversion to Nam. Our results demonstrate that both the cultured cells and the culture medium mediate a rather active conversion of NAD+ intermediates. Consequently, in studies of precursor supplementation and uptake, the culture conditions need to be carefully defined.


2021 ◽  
Vol 22 (3) ◽  
pp. 1391
Author(s):  
Andrey Kropotov ◽  
Veronika Kulikova ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


2021 ◽  
Author(s):  
Yo Sasaki ◽  
Jian Zhu ◽  
Yun Shi ◽  
Weixi Gu ◽  
Bostjan Kobe ◽  
...  

SARM1 is an inducible NAD+ hydrolase that is the central executioner of pathological axon loss. Recently, we elucidated the molecular mechanism of SARM1 activation, demonstrating that SARM1 is a metabolic sensor regulated by the levels of NAD+ and its precursor, nicotinamide mononucleotide (NMN), via their competitive binding to an allosteric site. In healthy neurons with abundant NAD+, binding of NAD+ blocks access of NMN to this allosteric site. However, with injury or disease the levels of the NAD+ biosynthetic enzyme NMNAT2 drop, increasing the NMN/NAD+ ratio and thereby promoting NMN binding to the SARM1 allosteric site, which in turn induces a conformational change activating the SARM1 NAD+ hydrolase. Hence, NAD+ metabolites both regulate the activation of SARM1 and, in turn, are regulated by the SARM1 NAD+ hydrolase. This dual upstream and downstream role for NAD+ metabolites in SARM1 function has hindered mechanistic understanding of axoprotective mechanisms that manipulate the NAD+ metabolome. Here we reevaluate two methods that potently block axon degeneration via modulation of NAD+ related metabolites, 1) the administration of the NMN biosynthesis inhibitor FK866 in conjunction with the NAD+ precursor nicotinic acid riboside (NaR) and 2) the neuronal expression of the bacterial enzyme NMN deamidase. We find that these approaches not only lead to a decrease in the levels of the SARM1 activator NMN, but also an increase in the levels of the NAD+ precursor nicotinic acid mononucleotide (NaMN). We show that NaMN competes with NMN for binding to the SARM1 allosteric site, that NaMN inhibits SARM1 activation, and that this NaMN-mediated inhibition is important for the long-term axon protection induced by these treatments. Together, these results demonstrate that the SARM1 allosteric pocket can bind a diverse set of metabolites including NMN, NAD+, and NaMN to monitor cellular NAD+ homeostasis and regulate SARM1 NAD+ hydrolase activity. The relative promiscuity of the allosteric site may enable the development of potent pharmacological inhibitors of SARM1 activation for the treatment of neurodegenerative disorders.


2004 ◽  
Vol 48 (12) ◽  
pp. 4532-4541 ◽  
Author(s):  
Elizabeta Sauer ◽  
Melisa Merdanovic ◽  
Anne Price Mortimer ◽  
Gerhard Bringmann ◽  
Joachim Reidl

ABSTRACT The utilization pathway for the uptake of NAD and nicotinamide riboside was previously characterized for Haemophilus influenzae. We now report on the cellular location, topology, and substrate specificity of PnuC. pnuC of H. influenzae is only distantly related to pnuC of Escherichia coli and Salmonella enterica serovar Typhimurium. When E. coli PnuC was expressed in an H. influenzae pnuC mutant, it was able to take up only nicotinamide riboside and not nicotinamide mononucleotide. Therefore, we postulated that PnuC transporters in general possess specificity for nicotinamide riboside. Earlier studies showed that 3-aminopyridine derivatives (e.g., 3-aminopyridine adenine dinucleotide) are inhibitory for H. influenzae growth. By testing characterized strains with mutations in the NAD utilization pathway, we show that 3-aminopyridine riboside is inhibitory to H. influenzae and is taken up by the NAD-processing and nicotinamide riboside route. 3-Aminopyridine riboside is utilized effectively in a pnuC+ background. In addition, we demonstrate that 3-aminopyridine adenine dinucleotide resynthesis is produced by NadR. 3-Aminopyridine riboside-resistant H. influenzae isolates were characterized, and mutations in nadR could be detected. We also tested other species of the family Pasteurellaceae, Pasteurella multocida and Actinobacillus actinomycetemcomitans, and found that 3-aminopyridine riboside does not act as a growth inhibitor; hence, 3-aminopyridine riboside represents an anti-infective agent with a very narrow host range.


2021 ◽  
Author(s):  
Karthikeyani Chellappa ◽  
Melanie R McReynolds ◽  
Wenyun Lu ◽  
Xianfeng Zeng ◽  
Mikhail Makarov ◽  
...  

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in both mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome. We find that preferred dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut. Instead, circulating host nicotinamide enters the gut lumen and supports gut microbiome NAD synthesis. In addition, the microbiome converts nicotinamide, originating from the host circulation, into nicotinic acid. Host tissues uptake and utilize this microbiome-derived nicotinic acid for NAD synthesis, maintaining circulating nicotinic acid levels even in the absence of dietary consumption. Moreover, the main route from oral nicotinamide riboside, a widely used nutraceutical, to host NAD is via conversion into nicotinic acid by the gut microbiome. Thus, NAD precursors cycle between the host and gut microbiome to maintain NAD homeostasis.


2021 ◽  
Author(s):  
Miguel Fontecha-Barriuso ◽  
Ana Lopez-Diaz ◽  
Sol Carriazo ◽  
Alberto Ortiz ◽  
Ana Belen Sanz

ABSTRACT In a recent issue of ckj, Piedrafita et al reported that urine tryptophan and kynurenine are reduced in cardiac bypass surgery patients that develop acute kidney injury (AKI), suggesting reduced activity of the kynurenine pathway of nicotinamide adenine dinucleotide (NAD+) synthesis from tryptophan. However, nicotinamide (NAM) supplementation aiming at repleting NAD+ did not replete kidney NAD+ and did not improve glomerular filtration or reduce histological injury in ischemic-reperfusion kidney injury in mice. The lack of improvement of kidney injury is partially at odds with prior reports that did not study kidney NAD+, glomerular filtration or histology in NAM-treated wild-type mice with AKI. We now present an overview of research on therapy with vitamin B3 vitamers and derivate molecules [niacin, NAM, nicotinamide riboside (NR), NRH and nicotinamide mononucleotide (NMN)] in kidney injury, including an overview of ongoing clinical trials, and discuss the potential explanations for diverging reports on the impact of these therapeutic approaches on preclinical acute and chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document