scholarly journals Comprehensive transcriptomic profiling reveals SOX7 as an early regulator of angiogenesis in hypoxic human endothelial cells

2020 ◽  
Vol 295 (15) ◽  
pp. 4796-4808 ◽  
Author(s):  
Jeff Klomp ◽  
James Hyun ◽  
Jennifer E. Klomp ◽  
Kostandin Pajcini ◽  
Jalees Rehman ◽  
...  

Endothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia. We observed that hypoxia modulates the expression levels of approximately one-third of the EC transcriptome. Intriguingly, expression of the gene encoding the developmental transcription factor SOX7 (SRY-box transcription factor 7) rapidly and transiently increased during hypoxia. Transcriptomic and functional analyses of ECs following SOX7 depletion established its critical role in regulating hypoxia-induced angiogenesis. We also observed that depletion of the hypoxia-inducible factor (HIF) genes, HIF1A (encoding HIF-1α) and endothelial PAS domain protein 1 (EPAS1 encoding HIF-2α), inhibited both distinct and overlapping transcriptional programs. Our results indicated a role for HIF-1α in down-regulating mitochondrial metabolism while concomitantly up-regulating glycolytic genes, whereas HIF-2α primarily up-regulated the angiogenesis transcriptional program. These results identify the concentration and time dependence of the endothelial transcriptomic response to hypoxia and an early key role for SOX7 in mediating angiogenesis.

Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2705-2712 ◽  
Author(s):  
Maura Calvani ◽  
Annamaria Rapisarda ◽  
Badarch Uranchimeg ◽  
Robert H. Shoemaker ◽  
Giovanni Melillo

AbstractHypoxia is a major pathophysiological condition for the induction of angiogenesis, which is a crucial aspect of growth in solid tumors. In mammalian cells, the transcriptional response to oxygen deprivation is largely mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimer composed of HIF-1α and HIF-1β subunits. However, the response of endothelial cells to hypoxia and the specific involvement of HIF-α subunits in this process are still poorly understood. We show that human umbilical vein endothelial cells (HUVECs) cultured in the absence of growth factors survive and form tubelike structures when cultured under hypoxic, but not normoxic, conditions. HUVECs expressed both HIF-1α and HIF-2α when cultured under hypoxic conditions. Transfection of HIF-1α, but not HIF-2α, siRNA to HUVECs completely abrogated hypoxic induction of cords. Neutralizing antibodies to bFGF, but not IGF-1, VEGF, or PDGF-BB, blocked survival and sprouting of HUVECs under hypoxic conditions, suggesting the existence of an autocrine loop induced by low oxygen levels. Notably, bFGF-dependent induction of cord formation under normoxic conditions required HIF-1α activity, which was also essential for hypoxic induction of bFGF mRNA and protein expression. These results uncover the existence of an HIF-1α–bFGF amplification pathway that mediates survival and sprouting of endothelial cells under hypoxic conditions.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2565-2570 ◽  
Author(s):  
Lorenzo Veschini ◽  
Daniela Belloni ◽  
Chiara Foglieni ◽  
Maria Giulia Cangi ◽  
Marina Ferrarini ◽  
...  

Abstract Angiogenesis is a complex, orchestrated process that plays a critical role in several conditions and has special relevance in the progression of cancer. Hypoxia is the major stimulus for angiogenesis, and hypoxia-inducible transcription factor–1 alpha (HIF-1α) is its key mediator. We set up a novel in vitro model of HIF-1α up-regulation by treating human umbilical vein endothelial cells (HUVECs) with the hypoxia-mimicking deferoxamine (DFO) and found that this condition was sufficient to promote angiogenesis, like the well-known HUVEC model cultured under low pO2. The proteasome inhibitor bortezomib, which induces strong apoptosis in cancer cells, abrogated proliferation and angiogenesis of HUVECs when used at a high concentration (100 nM), yet promoted both functions at a low dosage (10 nM). This double-edged effect appeared to be mediated by differential effects exerted by the different concentrations of bortezomib on 2 master regulators of tumor-associated angiogenesis, HIF-1α and nuclear factor kappa B (NF-kB). Significantly, when HUVECs were induced to express HIF-1α prior to bortezomib treatment, proliferative and angiogenic responses were abolished, and a greatly enhanced proapoptotic effect was promoted with both concentrations of the drug. These findings indicate that HIF-1α up-regulation may sensitize endothelial cells to the antiangiogenic and proapoptotic effects of bortezomib and might be exploited to target tumor-associated vessels in the course of antiangiogenic therapies.


2002 ◽  
Vol 92 (3) ◽  
pp. 1152-1158 ◽  
Author(s):  
Scott Earley ◽  
Leif D. Nelin ◽  
Louis G. Chicoine ◽  
Benjimen R. Walker

Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O2) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso- N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O2) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O2) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O2) exposure. ET-1 promoter activity after S-nitroso- N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.


2011 ◽  
Vol 105 (06) ◽  
pp. 999-1009 ◽  
Author(s):  
Joellen Lin ◽  
Mathieu Garand ◽  
Branislava Zagorac ◽  
Steven Schadinger ◽  
Corey Scipione ◽  
...  

SummaryTAFI (thrombin-activatable fibrinolysis inhibitor) is a carboxypeptidase zymogen originally identified in plasma. The TAFI pathway helps to regulate the balance between the coagulation and fibrinolytic cascades. Activated TAFI (TAFIa) can also inactivate certain pro-inflammatory mediators, suggesting that the TAFI pathway may also regulate communication between coagulation and inflammation. Expression in the liver is considered to be the source of plasma TAFI. TAFI has also been identified in platelets and CPB2 (the gene encoding TAFI) mRNA has been detected in megakaryocytic cell lines as well as in endothelial cells. We have undertaken a quantitative analysis of CPB2 mRNA and TAFI protein in extrahepatic cell types relevant to vascular disease. Using RT-PCR and quantitative RT-PCR, we detected CPB2 mRNA in the human megakaryoblastic cell lines MEG-01 and Dami, the human monocytoid cell line THP-1 as well as THP-1 cells differentiated into a macrophage-like phenotype, and in primary human umbilical vein and coronary artery endothelial cells. CPB2 mRNA abundance in MEG-01, Dami, and THP-1 cells was modulated by the state of differentiation of these cells. Using a recently developed TAFIa assay, we detected TAFI protein in the lysates of the human hepatocellular carcinoma cell line HepG2 as well as in MEG-01 and Dami cells and in the conditioned medium of HepG2 cells, differentiated Dami cells, and THP-1 macrophages. We have obtained clear evidence for extrahepatic expression of TAFI, which has clear implications for the physiological and pathophysiological functions of the TAFI pathway.


2007 ◽  
Vol 292 (2) ◽  
pp. F895-F904 ◽  
Author(s):  
Arup Chakraborty ◽  
Heddwen Brooks ◽  
Ping Zhang ◽  
Wayne Smith ◽  
Matthew R. McReynolds ◽  
...  

The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) inhibits monocyte chemotactic protein-1- and stromal-derived factor-1α (SDF-1α)-mediated chemotaxis and diminishes chemokinesis in macrophage-like RAW264.7 and U937 cells in a manner that may involve attenuation of the intracellular calcium signal. STC1 is strongly induced in the kidney following obstructive injury. We hypothesized that STC1 may serve to attenuate the influx of inflammatory cells to the site of tissue injury. In this study, we examined the effect of STC1 on the migration of freshly isolated human macrophages, neutrophils, and T and B lymphocytes through quiescent or IL-1β-treated human umbilical vein endothelial cell (HUVEC) monolayers. STC1 inhibited transmigration of macrophages and T lymphocytes through quiescent or IL-1β-activated HUVECs but did not attenuate the transmigration of neutrophils and B lymphocytes. STC1 regulates gene expression in cultured endothelial cells and is detected on the apical surface of endothelial cells in vivo. The data suggest that STC1 plays a critical role in transendothelial migration of inflammatory cells and is involved in the regulation of numerous aspects of endothelial function.


2013 ◽  
Vol 288 (38) ◽  
pp. 27423-27433 ◽  
Author(s):  
Duy Pham ◽  
Crystal C. Walline ◽  
Kristin Hollister ◽  
Alexander L. Dent ◽  
Janice S. Blum ◽  
...  

Cytokine responsiveness is a critical component of the ability of cells to respond to the extracellular milieu. Transcription factor-mediated regulation of cytokine receptor expression is a common mode of altering responses to the external environment. We identify the transcription factor Twist1 as a component of a STAT3-induced feedback loop that controls IL-6 signals by directly repressing Il6ra. Human and mouse T cells lacking Twist1 have an increased ability to differentiate into Th17 cells. Mice with a T cell-specific deletion of Twist1 demonstrate increased Th17 and T follicular helper cell development, early onset experimental autoimmune encephalomyelitis, and increased antigen-specific antibody responses. Thus, Twist1 has a critical role in limiting both cell-mediated and humoral immunity.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2363-2369 ◽  
Author(s):  
Ta-Kashi Ito ◽  
Genichiro Ishii ◽  
Seiji Saito ◽  
Keiichi Yano ◽  
Ayuko Hoshino ◽  
...  

AbstractVascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF165 isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.


Physiology ◽  
2014 ◽  
Vol 29 (3) ◽  
pp. 168-176 ◽  
Author(s):  
Ataman Sendoel ◽  
Michael O. Hengartner

Eukaryotic life depends largely on molecular oxygen. During evolution, ingenious mechanisms have evolved that allow organisms to adapt when oxygen levels decrease. Many of these adaptional responses to low oxygen are orchestrated by the heterodimeric transcription factor hypoxia-inducible factor (HIF). Here, we review the link between HIF and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document