scholarly journals Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication

2020 ◽  
Vol 295 (45) ◽  
pp. 15378-15397
Author(s):  
Rujuta Yashodhan Gadgil ◽  
Eric J. Romer ◽  
Caitlin C. Goodman ◽  
S. Dean Rider ◽  
French J. Damewood ◽  
...  

Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG)n and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c-myc replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG)100 microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG)100 lagging-strand template. (CTG/CAG)n chromosome fragility is repeat length–dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG)100 microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG)100 microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure–prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.

2020 ◽  
Author(s):  
Kam Pou Ha ◽  
Rebecca S. Clarke ◽  
Gyu-Lee Kim ◽  
Jane L. Brittan ◽  
Jessica E. Rowley ◽  
...  

AbstractThe repair of DNA damage is essential for bacterial viability and contributes to adaptation via increased rates of mutation and recombination. However, the mechanisms by which DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double strand breaks via the oxidative burst, which are repaired by RexAB, leading to induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted survival of these pathogens in human blood, suggesting that DNA double strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.


2017 ◽  
Author(s):  
Clémence Claussin ◽  
David Porubský ◽  
Diana C.J. Spierings ◽  
Nancy Halsema ◽  
Stefan Rentas ◽  
...  

SummaryHomologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. Contrary to what is commonly thought, we find that most spontaneous SCE events are not due to the repair of DNA double-strand breaks.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Bente Benedict ◽  
Tanja van Harn ◽  
Marleen Dekker ◽  
Simone Hermsen ◽  
Asli Kucukosmanoglu ◽  
...  

In cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks. In this system, loss of p53 allowed mitogen-independent proliferation, not by suppressing apoptosis, but rather by restoring origin firing and reducing DNA breakage. Loss of G1/S control also caused DNA damage and activation of p53 in an in vivo retinoblastoma model. Moreover, in a teratoma model, loss of p53 reduced DNA breakage. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.


2019 ◽  
Vol 47 (6) ◽  
pp. 1609-1619 ◽  
Author(s):  
Qian Wu

Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), which is the most toxic DNA damage in cells. Unrepaired DSBs can cause genome instability, tumorigenesis or cell death. DNA end synapsis is the first and probably the most important step of the NHEJ pathway, aiming to bring two broken DNA ends close together and provide structural stability for end processing and ligation. This process is mediated through a group of NHEJ proteins forming higher-order complexes, to recognise and bridge two DNA ends. Spatial and temporal understanding of the structural mechanism of DNA-end synapsis has been largely advanced through recent structural and single-molecule studies of NHEJ proteins. This review focuses on core NHEJ proteins that mediate DNA end synapsis through their unique structures and interaction properties, as well as how they play roles as anchor and linker proteins during the process of ‘bridge over troubled ends'.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Kasper Fugger ◽  
Wai Kit Chu ◽  
Peter Haahr ◽  
Arne Nedergaard Kousholt ◽  
Halfdan Beck ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 705
Author(s):  
Vanesa Gottifredi ◽  
Lisa Wiesmüller

In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52—both in S and M phase—that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.


2014 ◽  
Vol 25 (16) ◽  
pp. 2461-2471 ◽  
Author(s):  
Rebecca K. Swartz ◽  
Elisa C. Rodriguez ◽  
Megan C. King

Unless efficiently and faithfully repaired, DNA double-strand breaks (DSBs) cause genome instability. We implicate a Schizosaccharomyces pombe nuclear envelope–spanning linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of the Sad1/Unc84 protein Sad1 and Klarsicht/Anc1/SYNE1 homology protein Kms1, in the repair of DSBs. An induced DSB associates with Sad1 and Kms1 in S/G2 phases of the cell cycle, connecting the DSB to cytoplasmic microtubules. DSB resection to generate single-stranded DNA and the ATR kinase drive the formation of Sad1 foci in response to DNA damage. Depolymerization of microtubules or loss of Kms1 leads to an increase in the number and size of DSB-induced Sad1 foci. Further, Kms1 and the cytoplasmic microtubule regulator Mto1 promote the repair of an induced DSB by gene conversion, a type of homology-directed repair. kms1 genetically interacts with a number of genes involved in homology-directed repair; these same gene products appear to attenuate the formation or promote resolution of DSB-induced Sad1 foci. We suggest that the connection of DSBs with the cytoskeleton through the LINC complex may serve as an input to repair mechanism choice and efficiency.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160285 ◽  
Author(s):  
Magdalena B. Rother ◽  
Haico van Attikum

Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


2019 ◽  
Author(s):  
Guillaume Gaullier ◽  
Genevieve Roberts ◽  
Uma M. Muthurajan ◽  
Samuel Bowerman ◽  
Johannes Rudolph ◽  
...  

AbstractPoly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.


Sign in / Sign up

Export Citation Format

Share Document