scholarly journals Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology

2019 ◽  
Vol 19 (3) ◽  
pp. 444-455
Author(s):  
Jacob Netherton ◽  
Rachel A. Ogle ◽  
Louise Hetherington ◽  
Ana Izabel Silva Balbin Villaverde ◽  
Hubert Hondermarck ◽  
...  

Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.

2013 ◽  
Vol 71 (Suppl 3) ◽  
pp. 160.3-160
Author(s):  
P. Fernández-Puente ◽  
L. Lourido ◽  
V. Calamia ◽  
J. Mateos ◽  
C. Ruiz-Romero ◽  
...  

2020 ◽  
Vol 26 (4) ◽  
pp. 474-500 ◽  
Author(s):  
Christiane Pleuger ◽  
Mari S Lehti ◽  
Jessica EM Dunleavy ◽  
Daniela Fietz ◽  
Moira K O’Bryan

Abstract BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis—the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review—protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.


1994 ◽  
Vol 6 (4) ◽  
pp. 485 ◽  
Author(s):  
WG Breed

Australian marsupials exhibit a wide range of variation in sperm head morphology, and in thickness of the zona pellucida around the oocyte, suggesting interspecfic differences in the processes of sperm-egg interaction. The observations described here are largely based on the dasyurid Sminthopsis crassicaudata. They show that in oestrous females, after mating, a coagulum forms in the lateral vaginae and, within an hour of insemination, numerous spermatozoa congregate in the isthmus of the oviduct in which the vanguard population undergoes transformation with the head rotating on its axis with the tail to form a T-shape. Once oocytes are released, a few spermatozoa migrate to the higher reaches of the oviduct where sperm-zona binding occurs by way of the plasmalemma over the acrosomal region. The acrosome reaction takes place here and, as the egg rotates, the tail of the spermatozoon becomes parallel to the head. A small region of acrosome sometimes appears to remain intact at this time because spermatozoa with partly intact acrosomes have been found within the zona matrix. In some of these, electron-dense bridges between part of the inner and outer acrosomal membranes which may act as stabilizing structures, were also seen. The zona matrix is tightly packed around the penetrating spermatozoon, but that close to the acrosomal region becomes less electron-dense and more filamentous. Once incorporated into the egg, the spermatozoon lacks a cell membrane around the tail but vesicles close to the sperm head may, at least in part, be remnants of an inner acrosomal membrane. How generally applicable these observations are to other Australian marsupials remains to be determined.


2009 ◽  
Vol 21 (1) ◽  
pp. 213
Author(s):  
N. Satake ◽  
S. D. Johnston ◽  
W. V. Holt

Koala semen contains a heterogeneous mixture of sperm morphotypes, mainly attributable to extreme degree of shape variability displayed by the hooked sperm head. By analogy with other species, we anticipate that the morphotypes may exhibit correspondingly different sperm-motility behaviors, largely caused by the differences in hydrodynamic interactions with the suspending media. This trend has been shown in human spermatozoa where motility behavior was demonstrably correlated with the sperm head morphology (Overstreet et al. 1981). In this study, we have investigated the heterogeneity of koala sperm motility profiles in semen in an effort to determine whether distinct sperm subpopulations within ejaculates are recognizable by the use of computer-assisted sperm motility analysis. Ejaculates from 5 males were collected by electroejaculation, then diluted and transported in Tris-citrate-glucose (TCG) diluent. Spermatozoa were washed through a 35–60% Percoll gradient to separate seminal plasma and the majority of the prostatic bodies from spermatozoa. Spermatozoa from the washed pellet were then diluted in TCG at 35°C, incubated for 10 min, and video recorded using a negative phase ×10 objective. Sperm motion parameters were then analyzed using the Hobson sperm tracker (Hobson Vision Systems, UK: Holt et al. 1996 J. Androl. 17, 587–596). Multivariate pattern analysis (PATN; CSIRO Australia; Abaigar 1999 Biol. Reprod. 60, 32–41) was used to distinguish 3 sperm subgroups, consistently shown in each ejaculate, within the data (1936 tracks × 6 kinetic parameters; VCL, VAP, MAD, BCF, ALH, LIN). After group allocation by PATN, all parameters showed significant differences between each of the groups (P < 0.0001). Group 1, approximately 25% of the sperm tracks, showed profiles of spermatozoa with fast, non-linear motility (VCL 106.88 ± 28.15; BCF 3.23 ± 3.81; LIN 14.08 ± 10.20). Group 2, approximately 27% of sperm tracks, showed profiles of fast, linear motility (VCL 63.92 ± 13.50; BCF 7.90 ± 3.42; LIN 28.10 ± 12.15). Group 3, 48% of sperm tracks, showed profiles of slow, non-linear or circular patterns of motility (VCL 39.05 ± 11.92; BCF 0.02 ± 0.35; LIN 5.15 ± 4.88). The recognition of 3 clearly identifiable subgroups supports our hypothesis that heterogeneity of sperm motility patterns exists within koala ejaculates. These may be a reflection of the heterogeneity in sperm-head morphotypes in koala semen, but that remains to be investigated in more detail. The clear distinctions between these groups, and the observation that all 3 subpopulations exist in each of the ejaculates, also suggest that the spermatozoa exhibit functional differences, possibly related to biochemical or maturational status. Many thanks to Dr. Michael Pyne and Dr. Vere Nicholson and their teams and animals at Currumbin Wildlife Sanctutary and Dreamwolrd QLD for all their help and support for the collection of samples.


2020 ◽  
Vol 102 (5) ◽  
pp. 988-998
Author(s):  
Bingbing Wu ◽  
Hui Gao ◽  
Chao Liu ◽  
Wei Li

Abstract A strong sperm head–tail coupling apparatus (HTCA) is needed to ensure the integrity of spermatozoa during their fierce competition to fertilize the egg. A lot of HTCA-specific components have evolved to strengthen the attachment of the tail to the implantation fossa at the sperm head. Defects in HTCA formation lead to acephalic spermatozoa syndrome and pathologies of some male infertility. Recent studies have provided insights into the pathogenic molecular mechanisms of acephalic spermatozoa syndrome. Here, we summarize the proteins involved in sperm neck development and focus on their roles in the formation of HTCA. In addition, we discuss the fine structures of the sperm neck in different species from an evolutionary view, highlighting the potential conservative mechanism of HTCA formation.


2017 ◽  
Vol 84 ◽  
pp. 205-216 ◽  
Author(s):  
Violeta Chang ◽  
Laurent Heutte ◽  
Caroline Petitjean ◽  
Steffen Härtel ◽  
Nancy Hitschfeld

2016 ◽  
Vol 5 (6) ◽  
pp. 1573-1584 ◽  
Author(s):  
Zhuo-Jia Chen ◽  
Kun-Shui Zhang ◽  
Li-Chen Ge ◽  
Hao Liu ◽  
Li-Kun Chen ◽  
...  

Recent studies indicated that bisphenol A (BPA) can disrupt spermatogenesis and then cause male infertility.


1979 ◽  
Author(s):  
D.J. Doyle ◽  
C.N. Chesterman ◽  
J.F. Cade ◽  
F.J. Morgan

Relationships between platelet survival (51Cr) and plasma concentrations (radioimmunoassay) of β-thromboglobulin (βTC) and platelet factor 4 (PF4) were analysed in 91 studies of patients prior to and after coronary artery bypass surgery. Platelet lifespans were calculated using the linear, exponential, weighted mean (WM) and multiple hit (MH) models. The values obtained approximated normal distributions and all the indices correlated, r values ranging from 0.69 to 6 (p<0,001 in all cases).βTC had significant negative correlations with all indices of platelet survival, the most significant being with MH (r = -0.39, p<0.001). Of interest was the correlation of βTG with the number of hits (n) in MH (r = -0.29, p<0.01). PF4 correlated with all indices of platelet survival except n, the most significant correlation was with WM (r = 0.33, p<0.01). BTC and PF4 were highly correlated (r = 0.62, p<0.001), however no benefit was obtained by combining measurements of the two proteins in any regression with platelet lifespan.The results suggest that shortened platelet survival in vascular disease is associated with platelet release of BTG and PF4 and that these platelet specific proteins are comparable as markers of platelet activation in vivo.


Sign in / Sign up

Export Citation Format

Share Document