Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry

2020 ◽  
Vol 19 (12) ◽  
pp. 1997-2014
Yadong Yu ◽  
Haichuan Liu ◽  
Zanlin Yu ◽  
H. Ewa Witkowska ◽  
Yifan Cheng

AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried – from expression host – six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Han Han ◽  
James M Fulcher ◽  
Venkata P Dandey ◽  
Janet H Iwasa ◽  
Wesley I Sundquist ◽  

Many AAA+ ATPases form hexamers that unfold protein substrates by translocating them through their central pore. Multiple structures have shown how a helical assembly of subunits binds a single strand of substrate, and indicate that translocation results from the ATP-driven movement of subunits from one end of the helical assembly to the other end. To understand how more complex substrates are bound and translocated, we demonstrated that linear and cyclic versions of peptides bind to the S. cerevisiae AAA+ ATPase Vps4 with similar affinities, and determined cryo-EM structures of cyclic peptide complexes. The peptides bind in a hairpin conformation, with one primary strand equivalent to the single chain peptide ligands, while the second strand returns through the translocation pore without making intimate contacts with Vps4. These observations indicate a general mechanism by which AAA+ ATPases may translocate a variety of substrates that include extended chains, hairpins, and crosslinked polypeptide chains.

2019 ◽  
Vol 47 (1) ◽  
pp. 37-45 ◽  
Han Han ◽  
Christopher P. Hill

Abstract The progression of ESCRT (Endosomal Sorting Complexes Required for Transport) pathways, which mediate numerous cellular membrane fission events, is driven by the enzyme Vps4. Understanding of Vps4 mechanism is, therefore, of fundamental importance in its own right and, moreover, it is highly relevant to the understanding of many related AAA+ ATPases that function in multiple facets of cell biology. Vps4 unfolds its ESCRT-III protein substrates by translocating them through its central hexameric pore, thereby driving membrane fission and recycling of ESCRT-III subunits. This mini-review focuses on recent advances in Vps4 structure and mechanism, including ideas about how Vps4 translocates and unfolds ESCRT-III subunits. Related AAA+ ATPases that share structural features with Vps4 and likely utilize an equivalent mechanism are also discussed.

2010 ◽  
Vol 21 (22) ◽  
pp. 3963-3972 ◽  
Neus Teixidó-Travesa ◽  
Judit Villén ◽  
Cristina Lacasa ◽  
Maria Teresa Bertran ◽  
Marco Archinti ◽  

The γ-tubulin complex is a multi-subunit protein complex that nucleates microtubule polymerization. γ-Tubulin complexes are present in all eukaryotes, but size and subunit composition vary. In Drosophila, Xenopus, and humans large γ-tubulin ring complexes (γTuRCs) have been described, which have a characteristic open ring-shaped structure and are composed of a similar set of subunits, named γ-tubulin, GCPs 2-6, and GCP-WD in humans. Despite the identification of these proteins, γTuRC function and regulation remain poorly understood. Here we establish a new method for the purification of native human γTuRC. Using mass spectrometry of whole protein mixtures we compared the composition of γTuRCs from nonsynchronized and mitotic human cells. Based on our analysis we can define core subunits as well as more transient interactors such as the augmin complex, which associates specifically with mitotic γTuRCs. We also identified GCP8/MOZART2 as a novel core subunit that is present in both interphase and mitotic γTuRCs. GCP8 depletion does not affect γTuRC assembly but interferes with γTuRC recruitment and microtubule nucleation at interphase centrosomes without disrupting general centrosome structure. GCP8-depleted cells do not display any obvious mitotic defects, suggesting that GCP8 specifically affects the organization of the interphase microtubule network.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1318 ◽  
Nicholas Bodnar ◽  
Tom Rapoport

A conserved AAA+ ATPase, called Cdc48 in yeast and p97 or VCP in metazoans, plays an essential role in many cellular processes by segregating polyubiquitinated proteins from complexes or membranes. For example, in endoplasmic reticulum (ER)-associated protein degradation (ERAD), Cdc48/p97 pulls polyubiquitinated, misfolded proteins out of the ER and transfers them to the proteasome. Cdc48/p97 consists of an N-terminal domain and two ATPase domains (D1 and D2). Six Cdc48 monomers form a double-ring structure surrounding a central pore. Cdc48/p97 cooperates with a number of different cofactors, which bind either to the N-terminal domain or to the C-terminal tail. The mechanism of Cdc48/p97 action is poorly understood, despite its critical role in many cellular systems. Recent in vitro experiments using yeast Cdc48 and its heterodimeric cofactor Ufd1/Npl4 (UN) have resulted in novel mechanistic insight. After interaction of the substrate-attached polyubiquitin chain with UN, Cdc48 uses ATP hydrolysis in the D2 domain to move the polypeptide through its central pore, thereby unfolding the substrate. ATP hydrolysis in the D1 domain is involved in substrate release from the Cdc48 complex, which requires the cooperation of the ATPase with a deubiquitinase (DUB). Surprisingly, the DUB does not completely remove all ubiquitin molecules; the remaining oligoubiquitin chain is also translocated through the pore. Cdc48 action bears similarities to the translocation mechanisms employed by bacterial AAA ATPases and the eukaryotic 19S subunit of the proteasome, but differs significantly from that of a related type II ATPase, the NEM-sensitive fusion protein (NSF). Many questions about Cdc48/p97 remain unanswered, including how it handles well-folded substrate proteins, how it passes substrates to the proteasome, and how various cofactors modify substrates and regulate its function.

2009 ◽  
Vol 421 (1) ◽  
pp. 71-77 ◽  
Yo-hei Watanabe ◽  
Yosuke Nakazaki ◽  
Ryoji Suno ◽  
Masasuke Yoshida

The ClpB chaperone forms a hexamer ring and rescues aggregated proteins in co-operation with the DnaK system. Each subunit of ClpB has two nucleotide-binding modules, AAA (ATPase associated with various cellular activities)-1 and AAA-2, and an 85-Å (1 Å=0.1 nm)-long coiled-coil. The coiled-coil consists of two halves: wing-1, leaning toward AAA-1, and wing-2, leaning away from all the domains. The coiled-coil is stabilized by leucine zipper-like interactions between leucine and isoleucine residues of two amphipathic α-helices that twist around each other to form each wing. To destabilize the two wings, we developed a series of mutants by replacing these residues with alanine. As the number of replaced residues increased, the chaperone activity was lost and the hexamer became unstable. The mutants, which had a stable hexameric structure but lost the chaperone activities, were able to exert the threading of soluble denatured proteins through their central pore. The destabilization of wing-1, but not wing-2, resulted in a several-fold stimulation of ATPase activity. These results indicate that stability of both wings of the coiled-coil is critical for full functioning of ClpB, but not for the central-pore threading of substrate proteins, and that wing-1 is involved in the communication between AAA-1 and AAA-2.

Science ◽  
2019 ◽  
Vol 365 (6452) ◽  
pp. 502-505 ◽  
Ian Cooney ◽  
Han Han ◽  
Michael G. Stewart ◽  
Richard H. Carson ◽  
Daniel T. Hansen ◽  

The cellular machine Cdc48 functions in multiple biological pathways by segregating its protein substrates from a variety of stable environments such as organelles or multi-subunit complexes. Despite extensive studies, the mechanism of Cdc48 has remained obscure, and its reported structures are inconsistent with models of substrate translocation proposed for other AAA+ ATPases (adenosine triphosphatases). Here, we report a 3.7-angstrom–resolution structure of Cdc48 in complex with an adaptor protein and a native substrate. Cdc48 engages substrate by adopting a helical configuration of substrate-binding residues that extends through the central pore of both of the ATPase rings. These findings indicate a unified hand-over-hand mechanism of protein translocation by Cdc48 and other AAA+ ATPases.

2002 ◽  
Vol 22 (2) ◽  
pp. 626-634 ◽  
Efrat Rabinovich ◽  
Anat Kerem ◽  
Kai-Uwe Fröhlich ◽  
Noam Diamant ◽  
Shoshana Bar-Nun

ABSTRACT Endoplasmic reticulum-associated degradation (ERAD) disposes of aberrant proteins in the secretory pathway. Protein substrates of ERAD are dislocated via the Sec61p translocon from the endoplasmic reticulum to the cytosol, where they are ubiquitinated and degraded by the proteasome. Since the Sec61p channel is also responsible for import of nascent proteins, this bidirectional passage should be coordinated, probably by molecular chaperones. Here we implicate the cytosolic chaperone AAA-ATPase p97/Cdc48p in ERAD. We show the association of mammalian p97 and its yeast homologue Cdc48p in complexes with two respective ERAD substrates, secretory immunoglobulin M in B lymphocytes and 6myc-Hmg2p in yeast. The membrane 6myc-Hmg2p as well as soluble lumenal CPY*, two short-lived ERAD substrates, are markedly stabilized in conditional cdc48 yeast mutants. The involvement of Cdc48p in dislocation is underscored by the accumulation of ERAD substrates in the endoplasmic reticulum when Cdc48p fails to function, as monitored by activation of the unfolded protein response. We propose that the role of p97/Cdc48p in ERAD, provided by its potential unfoldase activity and multiubiquitin binding capacity, is to act at the cytosolic face of the endoplasmic reticulum and to chaperone dislocation of ERAD substrates and present them to the proteasome.

2019 ◽  
Vol 295 (2) ◽  
pp. 435-443 ◽  
Han Han ◽  
Heidi L. Schubert ◽  
John McCullough ◽  
Nicole Monroe ◽  
Michael D. Purdy ◽  

Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.

2008 ◽  
Vol 413 (3) ◽  
pp. 447-457 ◽  
Jakob Wiborg ◽  
Charlotte O'Shea ◽  
Karen Skriver

The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp266 in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis–trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis–trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3–E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 629 ◽  
Shuwen Zhang ◽  
Youdong Mao

Adenosine triphosphatases (ATPases) associated with a variety of cellular activities (AAA+), the hexameric ring-shaped motor complexes located in all ATP-driven proteolytic machines, are involved in many cellular processes. Powered by cycles of ATP binding and hydrolysis, conformational changes in AAA+ ATPases can generate mechanical work that unfolds a substrate protein inside the central axial channel of ATPase ring for degradation. Three-dimensional visualizations of several AAA+ ATPase complexes in the act of substrate processing for protein degradation have been resolved at the atomic level thanks to recent technical advances in cryogenic electron microscopy (cryo-EM). Here, we summarize the resulting advances in structural and biochemical studies of AAA+ proteases in the process of proteolysis reactions, with an emphasis on cryo-EM structural analyses of the 26S proteasome, Cdc48/p97 and FtsH-like mitochondrial proteases. These studies reveal three highly conserved patterns in the structure–function relationship of AAA+ ATPase hexamers that were observed in the human 26S proteasome, thus suggesting common dynamic models of mechanochemical coupling during force generation and substrate translocation.

Sign in / Sign up

Export Citation Format

Share Document