Hydroponic System - Solution Culture.

Author(s):  
Lynette Morgan

Abstract This paper discusses about the solution culture or 'hydroculture' systems, which are methods of crop production which do not employ the use of substrates to contain the root system and hold moisture between irrigations. It includes NFT or the nutrient film technique, deep water culture/deep flow technique - float, raft or pond systems, aeroponics, aquaponics, organic solution culture, hydroponic fodder systems, and automation for solution culture systems.

Author(s):  
Lynette Morgan

Abstract This paper discusses about the solution culture or 'hydroculture' systems, which are methods of crop production which do not employ the use of substrates to contain the root system and hold moisture between irrigations. It includes NFT or the nutrient film technique, deep water culture/deep flow technique - float, raft or pond systems, aeroponics, aquaponics, organic solution culture, hydroponic fodder systems, and automation for solution culture systems.


Author(s):  
Ivan Sevostianov ◽  
Oleksandr Melnik

Hydroponics is a promising area of development of modern agriculture, which provides long-term cultivation of basic vegetables and greenery in small areas with minimal consumption of water and fertilizers. This technology allows you to get a fairly large harvest of fresh vegetables within large cities, including office and residential premises. Entrepreneurs and researchers are paying close attention to developing more efficient hydroponics methods and equipment to implement them in order to reduce usable space, save water, nutrients and increase air supply and plant capacity. Several hydroponics systems are known: static solution culture, continuous flow solution (NFT) culture, deep water culture, passive irrigation, underwater and drainage irrigation systems, wastewater drainage system, deep-water fertilized culture, rotary system, aeroponics, wick system. The first three of the above methods were used commercially and industrially. The system of static culture solution does not provide the necessary saturation of plant roots with air. With the implementation of the method of continuous solution culture, minor buffering is possible due to interruptions in the flow (power outage), flooding of water in some canals, in addition, there are restrictions on the maximum length of canals (12 - 15 m). The system of deep-water culture on an industrial scale is used mainly for growing lettuce. Other mentioned systems are not efficient enough in terms of commercial use. The improved hydroponic installations presented in the article were developed taking into account the following requirements: universality of use (possibility of growing different types of plants); harmonization of optimal supply of crops with water, nutrients, light and air; maximum use of space; increasing the area for each plant and maintaining its stems and shoots. Also in the article the equation for definition of the basic parameters of the developed installations is given.


Author(s):  
Ivan Sevostyanov ◽  
Oleksandr Melnik

Hydroponics is a perspective direction of development of modern agriculture that provides perennial growing of main species of vegetables and greenery on small areas and with minimal expenses of water and fertilizers. This technology allows to get large enough harvests of fresh vegetables in big cities including office and living premises. Last time entrepreneurs and inventors pay a lot of attention for elaboration of more effective methods of hydroponics and equipment for their realization in direction of decrease of using areas, economy of water, nutrients and increase of air supply and plants capacity. There are several known methods of hydroponics: static solution culture, continuous-flow solution culture (NFT), deep water culture, passive sub-irrigation, flood and drain sub-irrigation, run-to-waste system, top-fed deep water culture, rotary system, aeroponics, fogponics. Commercial and industrial use got the first three from above mentioned methods. Herewith the method of static solution culture does not provide of necessary saturation of plant’s roots with air. Under realization of the method of continuous-flow solution culture are possible little buffering against interruptions in the flow (power outages), water logging in some channels, besides there are limitations for maximal length of channels (12 – 15 m). The method of deep water culture in industrial scales is used mainly for growing of lettuce. The other mentioned methods are not enough effective from point of view of commercial utilization. The improved hydroponic installations, presented in the article, were elaborated with consideration of such demands: versatility of use (a possibility of growing of various species of plants); harmonies optimal provision of crops with water, nutrients, light and air; maximal use of premise’s space; a possibility of re-space during of the growth period, increase of area for each plant and support of its stalk and sprouts. Also, the formulas for definition of main parameters of the elaborated installations are presented in the article.


2020 ◽  
Vol 5 (2) ◽  
pp. 164-173
Author(s):  
Dian Hendrayanti ◽  
Iman Rusmana ◽  
Dwi Andreas Santosa ◽  
Hamim Hamim

 The Biological Nitrogen Fixing (BNF) cyanobacteria can reduce atmospheric nitrogen into ammonium. This ability makes BNF cyanobacteria a potential eco-friendly N-source for soil-planted pad-dy. Apart from a few success stories of BNF cyanobacteria applica-tion in the rice field, its role as an ammonium producer is still an open question. There is also a possibility that indeed cyanobacteria biomass which provides nitrogen through the biological decomposing process. This study aimed to analyze the influence of three strains BNF cyanobacteria on paddy grown in the Deep-Water Culture (DWC) hydroponic system. Yoshida Nutrient Solution was used as a growth medium with the application of 0, 45.7, and 91.4 gL-1 of ammonium nitrate (NH4NO3) with five replications. The result showed that inter-action between cyanobacteria and nitrogen significantly influenced the total nitrogen of paddy plant, but not the paddy plant height, the num-ber of tillers, and biomass. Cyanobacterial filaments were found most-ly attached to the paddy root rather than floated in the DWC system. Paddy treated with cyanobacteria had more lateral root than control. The result suggested that cyanobacteria support paddy growth indi-rectly through nitrogen deposition in plant tissue and root development. 


2015 ◽  
Vol 33 (4) ◽  
pp. 493-497 ◽  
Author(s):  
Cléoma G Jesus ◽  
Fernando J Silva Júnior ◽  
Terezinha R Camara ◽  
Ênio FF Silva ◽  
Lilia Willadino

ABSTRACT: Salinity is one of the most limiting abiotic stresses in crop production worldwide. In this study, two rocket cultivars (Cultivada and Folha Larga) were grown in hydroponic system (nutrient film technique) under six treatments. The control comprised a nutrient solution without salt addition, and the other treatments contained different NaCl concentrations in the nutrient solution, resulting in the following electrical conductivities: 1.8, 3.8, 5.8, 7.8, 9.7 and 11.8 dS/m. The experimental design was completely randomized (6x2) with six levels of salt and two rockets cultivars, with four replicates per treatment. Increasing salinity reduced the fresh and dry mass of the leaves, roots, and the protein content, but the proline content was increased. The enzymatic activity of catalase (CAT), ascorbate peroxidase (APX) and polyphenoloxidase (PPO) increased with salinity. The activity of CAT and PPO of cv. Folha Larga was higher than of cv. Cultivada and coincided with a greater production of biomass in leaves and roots, showing the effectiveness of the antioxidative defense system in maintaining the growth of genotypes under increasing salinity of the solution.


2021 ◽  
Author(s):  
Maria C. Moreno ◽  
Oscar J. Suarez ◽  
Alda Pardo Garcia

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 459d-459
Author(s):  
Fumiomi Takeda ◽  
Paul R. Adler ◽  
D. Michael Glenn

Strawberry plants (cvs. Camarosa, Chandler, Sweet Charlie, Primetime, Jewel, and Tribute) were grown in soilless culture systems in a greenhouse from October to May. Fresh-dug and runner-tip Aplug® plants were transplanted into two systems: vertically stacked pots (24 plants/m2) containing perlite and horizontal nutrient film technique troughs (13 plants/m2). Plants were fertigated continuously with recirculating nutrient solution. In a 7-month production cycle, the plug plants bloomed earlier and produced more fruit during the first month of harvest (December) than the fresh-dug plants. Higher yields from plug plants were a result of more fruit numbers and not larger fruit size. Fruit production averaged 6.0 and 3.5 kg/m2 in the trough and pot systems, respectively. The vertical growing system allows greater plant densities, but light intensity reaching the plants in the lower sections of the tower can be less than 20% of levels measured at the top. Establishment costs of protected culture systems are higher, but production is earlier and labor costs are typically reduced. Greenhouse hydroponic culture systems could extend the winter strawberry production to more northern locations.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 885
Author(s):  
Pooja Tripathi ◽  
Sangita Subedi ◽  
Abdul Latif Khan ◽  
Yong-Suk Chung ◽  
Yoonha Kim

Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Mashoukur Rahaman ◽  
Md. Esraz-Ul-Zannat

AbstractCyclonic catastrophes frequently devastate coastal regions of Bangladesh that host around 35 million people which represents two-thirds of the total population. They have caused many problems like agricultural crop loss, forest degradation, damage to built-up areas, river and shoreline changes that are linked to people’s livelihood and ecological biodiversity. There is an absence of a comprehensive assessment of the major cyclonic disasters of Bangladesh that integrates geospatial technologies in a single study. This study aims to integrate geospatial technologies with major disasters and compares them, which has not been tried before. This paper tried to identify impacts that occurred in the coastal region by major catastrophic events at a vast level using different geospatial technologies. It focuses to identify the impacts of major catastrophic events on livelihood and food production as well as compare the impacts and intensity of different disasters. Furthermore, it compared the losses among several districts and for that previous and post-satellite images of disasters that occurred in 1988, 1991, 2007, 2009, 2019 were used. Classification technique like machine learning algorithm was done in pre- to post-disaster images. For quantifying change in the indication of different factors, indices including NDVI, NDWI, NDBI were developed. “Change vector analysis” equation was performed in bands of the images of pre- and post-disaster to identify the magnitude of change. Also, crop production variance was analyzed to detect impacts on crop production. Furthermore, the changes in shallow to deep water were analyzed. There is a notable change in shallow to deep water bodies after each disaster in Satkhira and Bhola district but subtle changes in Khulna and Bagerhat districts. Change vector analysis revealed greater intensity in Bhola in 1988 and Satkhira in 1991. Furthermore, over the years 2007 and 2009 it showed medium and deep intense areas all over the region. A sharp decrease in Aus rice production is witnessed in Barishal in 2007 when cyclone “Sidr” was stricken. The declination of potato production is seen in Khulna district after the 1988 cyclone. A huge change in the land-use classes from classified images like water body, Pasture land in 1988 and water body, forest in 1991 is marked out. Besides, a clear variation in the settlement was observed from the classified images. This study explores the necessity of using more geospatial technologies in disastrous impacts assessment around the world in the context of Bangladesh and, also, emphasizes taking effective, proper and sustainable disaster management and mitigation measures to counter future disastrous impacts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Sign in / Sign up

Export Citation Format

Share Document