Livestock integration in conservation agriculture.

2022 ◽  
pp. 215-229
Author(s):  
Saidi Mkomwa ◽  
Amir Kassam ◽  
Sjoerd W. Duiker ◽  
Nouhoun Zampaligre

Abstract Grazing livestock have been presented as an unsurmountable obstacle for Conservation Agriculture (CA) in Africa, because they consume organic cover. But grazing livestock can also make positive contributions to CA, while, if properly managed, sufficient organic cover can be left for soil erosion control and soil health improvement. Urine and manure improve soil fertility and soil health, and increase the agronomic efficiency of fertilizer nutrients. Grazing livestock increase options for crop diversity, such as crop rotations with perennial forages, increased use of cover crops and tree-crop associations. Further, as crop yields improve through application of sustainable intensification methods, greater amounts of above-ground residue become available for livestock nutrition, while greater quantities of below- and above-ground plant residues can be left to improve soil health than are currently returned to the soil. At the same time, in areas where extensive systems are still common, greater amounts of crop residue can be left for soil function because alternative feed sources are available. More research and education on proper integration of livestock in CA in the African context, and successful models of pastoralist-crop farmer collaboration are needed, so both livestock and soil needs can be met.

2017 ◽  
Vol 6 (4) ◽  
pp. 142 ◽  
Author(s):  
Mutondwa M. Phophi ◽  
Paramu L. Mafongoya ◽  
Alfred O. Odindo ◽  
Lembe S. Magwaza

Soil health is important for sustainable crop production. Frequent soil cultivation has a negative impact on soil health, resulting in loss of soil macrofauna. Conservation agriculture can be practiced to improve soil health by improving the abundance of soil macrofauna. Three leguminous cover crops were tested for soil macrofauna abundance Vigna unguiculata, (cowpea) Lablab purpureus L. (dolichos lablab) and Mucuna pruriens (L.) DC (velvet bean). The experiment was done in two contrasting experimental sites of KwaZulu-Natal (Ukulinga and Bergville) in a randomised complete block design replicated three times. Bare plot and herbicide treatments served as controls. Natural fallow was used to make a comparison to all the other treatments. Cowpea (39 species) had the highest soil macrofauna abundance in Bergville. Lablab (57 species) had the highest soil macrofauna in Ukulinga. Cowpea (0.75 species) and lablab (0.61 species) improved soil macrofauna diversity respectively in Bergville. Natural fallow (0.46 species) had the lowest soil macrofauna diversity in Bergville. Lablab (0.56 species) and velvet bean (0.74 species) had high soil macrofauna species diversity in Ukulinga. Bare plot (0.3 species) had the lowest soil macrofauna species diversity respectively. It can be concluded that cowpea and lablab can be recommended for improving soil macrofauna abundance in conservation agriculture.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2334
Author(s):  
Heather L. Tyler

Conservation management practices can improve soil health while minimizing deleterious effects of agriculture on the environment. However, adoption of these practices, particularly cover crops, is not widespread, as they often reduce crop yields compared to traditional management practices. The purpose of the current study was to determine if a two-species cover crop treatment of rye (Secale cereale L.) and crimson clover (Trifolium incarnatum L.) could increase soil health parameters and maximize soybean (Glycine max L.) yield greater than rye only in tilled and no-till Mississippi field soils. Enhanced microbial biomass and organic matter input from cover crops increased the activities of β-glucosidase, cellobiohydrolase, fluorescein diacetate hydrolysis, N-acetylglucosaminidase, and phosphatase in surface soils. Rye plus clover tended to elicit higher activities than rye only in no-till plots. Both cover crop treatments inhibited soybean yield in tilled plots by 11–25%. These results indicate that tillage exacerbates yield inhibition by cover crops in soybean and that double-species cover crop treatments were more consistent in increasing activities linked to nutrient cycling. Further study examining different combinations of cover crops in no-till systems is necessary to gain a better understanding of how they can be implemented to enhance soil health while maximizing crop yield.


Agriculture ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 80 ◽  
Author(s):  
K. Bybee-Finley ◽  
Matthew Ryan

Sustainable intensification calls for agroecological and adaptive management of the agrifood system. Here, we focus on intercropping and how this agroecological practice can be used to increase the sustainability of crop production. Strip, mixed, and relay intercropping can be used to increase crop yields through resource partitioning and facilitation. In addition to achieving greater productivity, diversifying cropping systems through the use of strategic intercrops can increase yield stability, reduce pests, and improve soil health. Several intercropping systems are already implemented in industrialized agricultural landscapes, including mixed intercropping with perennial grasses and legumes as forage and relay intercropping with winter wheat and red clover. Because intercropping can provide numerous benefits, researchers should be clear about their objectives and use appropriate methods so as to not draw spurious conclusions when studying intercrops. In order to advance the practice, experiments that test the effects of intercropping should use standardized methodology, and researchers should report a set of common criteria to facilitate cross-study comparisons. Intercropping with two or more crops appears to be less common with annuals than perennials, which is likely due to differences in the mechanisms responsible for complementarity. One area where intercropping with annuals in industrialized agricultural landscapes has advanced is with cover crops, where private, public, and governmental organizations have harmonized efforts to increase the adoption of cover crop mixtures.


Author(s):  
Rifat Un Nisa ◽  
Tauseef A. Bhat ◽  
Tahir A. Sheikh ◽  
Owais Ali Wani ◽  
M. Anwar Bhat ◽  
...  

Agriculture conservation practices such as minimal soil disturbance, permanent soil covering by crop residues or cover crops, and crop rotations leads to higher farm productivity. Although conservation agriculture has been adopted in India since its inception, it has now been successfully used in Indo Gangetic Plains irrigated rice-wheat cropping systems and has recently been made known in parts of central India. In conservation agricultural system, cover crops play an important role in weed control, but their adoption level is still limited Changes in tillage practices, planting schemes, and other management techniques can change the soil environment and trigger a significant change in weed flora In intense tillage operations early season weed control could be obtained by turning the soil, which disrupts the germination of weed seeds and the growth of seedlings through burial. In addition, soil-administered herbicides that do not need to be manifested can have less persistence and efficacy in the presence of plant residues that can hinder and bind the chemical before it reaches the soil surface. Selective herbicide compounds that are effective on weed species and not on a specific crop, conferring non-selective herbicide tolerance on a crop may be enormously effectual for potent weed control.


2020 ◽  
Author(s):  
◽  
Jacob T. Young

In the Midwest, corn-soybean [Glycine max (L). Merrill] is the dominant biennial cropping system, which covers approximately 75% of the arable land surface (Hatfield et al., 2007; Plourde et al., 2013). The growing demand for corn (Zea mays L.) and its financial competitiveness as a cash crop over the past two decades has led to an increased use of more corn-intense cropping systems. This increase in corn intensity within corn soybean rotations in the Midwest has caused concern for maintaining soil health and cash crop yields for the long-term. The implementation of cover crops and crop rotation are widely promoted management strategies that have been shown to enhance soil health in agricultural systems, and may lead to increases in cash crop yields. The objectives of Chapter II of this dissertation were to examine the influence of cover crops, crop rotation, year, and their combination on several soil health indicators and cash crop yield. The soil health indicators of bulk density, water stable aggregates, soil moisture, total organic carbon, active carbon, potentially mineralizable nitrogen (PMN), and soil microbial community composition via a phospholipid fatty acid (PLFA) analysis were measured in 2017 and 2018 in Columbia, MO under no-till conditions. Grain yields of corn and soybean were recorded from 2016-2019. Crop rotation treatments significantly improved water stable aggregates and corn yield. Cover crop treatments led to significant improvements in several soil health indicators (water stable aggregates, soil moisture, PMN, AMF, gram negative bacteria, and the gram positive / gram negative ratio) while maintaining yield in soybean and decreasing yield in corn. The objectives of chapter III of this dissertation were to evaluate the long-term effects of increased corn frequency within a corn-soybean rotation on several soil health quality indicators and evaluate the long-term corn and soybean yield responses to ten different corn-soybean rotations. In order to better represent the long-term impacts of increased corn rotation intensity within rotations on soil health, corn rotation frequency (CRF) ratings were assigned to each rotation treatment based on the percentage of corn within each rotation. Utilizing these ratings when evaluating the soil data allows for effects of increased corn within rotations to be more easily identified. Soil measurements were taken in 2014 and included several indicators of soil physical, chemical, and biological health to provide a snapshot of conditions as a result of nine years of the ten rotation treatments being in place. Yield data was collected from 2007 â€" 2019 to evaluate the long-term effects of various corn intensities within corn-soybean rotations. Overall, corn yields were significantly improved in the first year after soybean, and with fewer consecutive years of corn in the rotation cycles. Soybean yields were most significantly improved after following two years of corn, and when avoiding consecutive years of soybean. Although the two-year corn-soybean rotation yields were statistically similar to soybean following two years of corn in 9 of 11 years in this study. For soil measurements, significant improvements from increased corn rotation intensity were seen in bulk density, total nitrogen, PMN, TOC, active carbon, SOM, [beta]-glucosidase, overall microbial biomass and diversity, AMF, gram negative bacteria, gram positive bacteria, and actinobacteria. These results provide valuable information to producers aiming to improve soil physical, chemical, and biological function while also maintaining the highest yield potential in corn-soybean rotations.


2022 ◽  
Author(s):  
Jianyong Ma ◽  
Sam S. Rabin ◽  
Peter Anthoni ◽  
Anita D. Bayer ◽  
Sylvia S. Nyawira ◽  
...  

Abstract. Improved agricultural management plays a vital role in protecting soils from degradation in Eastern Africa. Changing practices such as reducing tillage, fertilizer use or cover crops are expected to enhance soil organic carbon (SOC) storage, with climate change mitigation co-benefits, while increasing crop production. However, the quantification of cropland managements’ effects on agricultural ecosystems remains inadequate in this region. Here, we explored seven management practices and their potential effects on soil carbon (C) pools, nitrogen (N) losses, and crop yields under different climate scenarios, using the dynamic vegetation model LPJ-GUESS. The model performance is evaluated against observations from two long-term maize field trials in western Kenya and reported estimates from published sources. LPJ-GUESS generally produces soil C stocks and maize productivity comparable with measurements, and mostly captures the SOC decline under some management practices that is observed in the field experiments. We found that for large parts of Kenya and Ethiopia, an integrated conservation agriculture practice (no-tillage, residue and manure application, and cover crops) increases SOC levels in the long term (+11 % on average), accompanied by increased crop yields (+22 %) in comparison to the standard management. Planting nitrogen-fixing cover crops in our simulations is also identified as a promising individual practice in Eastern Africa to increase soil C storage (+4 %) and crop production (+18 %), with low environmental cost of N losses (+24 %). These management impacts are also sustained in simulations of three future climate pathways. This study highlights the possibilities of conservation agriculture when targeting long-term environmental sustainability and food security in crop ecosystems, particularly for those with poor soil conditions in tropical climates.


2020 ◽  
pp. 67-79
Author(s):  
Yu. Kravchenko

In Ukraine 57.5 % of agricultural land is subjected to erosion with 10–24 million tons of humus, 0.3–0.96 million tons of nitrogen, 0.7–0.9 million tons of phosphorus and 6–12 million tons of potassium lost annually. Degradation processes are also common on chernozems, which cover about 60 % of the Ukrainian territory. The aim of the research is to defi ne the most eff ective soil conservation practices and legislative decisions aimed to conservation/recovering the Ukrainian chernozem fertility. The experimental data of the agrochemical certifi cation of Ukrainian lands, data from scientifi c papers, stock and instructional materials as well as our own fi eld and laboratory studies were used. It has been established that the long-term use of deep subsurface tillage on typical chernozem increases, compared with plowing, the content of 10–0.25 mm of air-dry and water-resistant aggregates, the bulk density, soil water storages, water infi ltration rates, the content of mobile phosphorus and exchangeable potassium, pHH2O, CaCO3 stocks, the contents of humic and fulvic acids, molecular weights of humic acids – by 5.5 and 3.06 %; 0.05 g/cm3; 25.5 mm; 22.6 mm/h; 0.1 and 3 mg/100 g of soil; 0.03 pHH2O; 18 t/ha, 0.02 and 0.04 %, 91195 kDa, respectively. Fertilizers may contribute to the crop yields increase from by 60% in the Polissya, by 40 % – in the Forest Steppe, by 15 % – in the Wet Steppe, by 10 % – in the Dry Steppe and by 40 % – in the Irrigated Steppe areas. In soil-conservation rotations, the crop placement and alternation are advisable to combine with strips or hills sowing, taking into account the local relief features; soil alkalinization, applying anti-erosion structures. Ukrainian agriculture will receive additional 10–12 million tons of forage units or 20–22 % from all fodder in a fi eld agriculture under increasing 8–10 % of arable lands for intercrops. It is advisable to mulch the eroded chernozems of Ukraine depending on their texture composition: 1.3 t/ha of mulch for sandy and loamy soils, 1.9 t/ha – for sandy and 1.1 t/ha – for loamy soils. The implementation of soil conservation agriculture can minimize some soil degradation processes and improve eff ective soil properties required to realize the biological potential of cultivated plants. Key words: chernozem, degradation, fertility, soil conservation technologies, agriculture policy.


Author(s):  
V. P. Belobrov ◽  
S. А. Yudin ◽  
V. А. Kholodov ◽  
N. V. Yaroslavtseva ◽  
N. R. Ermolaev ◽  
...  

The influence of different systems of soil cultivation is considered - traditional (recommended) technology and direct sowing, which is increasingly used under dry conditions of the region. The rehabilitation of the degraded southern chernozems and dark chestnut soils structure during 13 and 7 years of direct sowing, respectively, has not been established. It takes much longer to rehabilitation the aggregate state of soils, which is currently in a critical condition of the content of aggregates> 10 mm in size and the sum of agronomically valuable aggregates. The soils under 60-year treeline, as a control, showed a satisfactory range of aggregates, which indicates a high degree of soil degradation in the past and a long period of their recovery time. The effectiveness of direct sowing usage in the cultivation of a wider range of grain and row crops (winter wheat, sunflower, peas, chickpeas, rapeseed, buckwheat, corn) is due to the peculiarities of agricultural technologies. Abandoning of naked fallows and soil treatments with the simultaneous use of plant residues and cover crops on the soil surface between the harvest and sowing of winter crops provides an anti-erosion effect and, as a consequence, a decrease in physical evaporation, an increase in moisture and biota reserves, an increase in microbiological processes, which are noted in the form trends in improving the agrochemical and agrophysical properties of soils.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


Sign in / Sign up

Export Citation Format

Share Document