scholarly journals Reproducibility of 24 h energy expenditure measurements using a human whole body indirect calorimeter

1987 ◽  
Vol 57 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Janna O. De Boer ◽  
Aren J. H. Van Es ◽  
Joop E. Vogt ◽  
Joop M. A. Van Raaij ◽  
Joseph G. A. J. Hautvast

1. Ten female subjects completed two similar experimental procedures (periods 1 and 2) to obtain values of reproducibility of energy intake and 24 h energy expenditure (24hEE) measurements in a whole body indirect calorimeter. The periods consisted of consumption of a provided weight-maintenance diet for 6–8 d, faeces and urine collection during the last 4 d and occupation of the calorimeter during the last 3 d. The daily routine inside the calorimeter simulated a sedentary day in normal life with some physical activity: 8 h sleep, 75 min bicycling and the remaining time spent on sedentary activities. The metabolizable energy (ME) content of the diet (14% energy as protein, 46% energy as carbohydrate, 40% energy as fat) was calculated using food tables. The actual ME intake as well as digestibility and metabolizability of the diet were obtained later by analyses of food, faeces and urine for energy. Three consecutive 24hEE measurements were performed during the stay in the calorimeter in each period. The time interval between the two periods varied from 2 to 24 months. Reproducibility was assessed at group and individual level.2. Mean digestibility and metabolizability of the diet showed no significant difference between periods. The within-subject coefficient of variation of metabolizability between periods was 1.7%.3. Mean 24hEE (MJ) over 3 d did not differ between period 1 (8.78 (SD 0.63)) and period 2 (8.73 (SD 0.66)). The within-subject coefficient of variation in mean 24hEE over three successive days between periods was 3.1% but decreased, after deletion of values for subjects who were less adapted to the calorimeter, to 1.9%.4. The results are discussed with regard to length of trial and the number of subjects required to test a difference in energy metabolism using whole body indirect calorimeters.

1989 ◽  
Vol 61 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Christopher J. H. Woodward ◽  
Peter W. Emery

1. Sprague–Dawley rats were injected for 16 d with long-acting insulin, and energy balance was calculated using the comparative carcass technique. Two experiments were carried out with females (starting weights 150 and 90 g respectively), and one with males (starting weight 150 g). In a fourth experiment, cytochrome c oxidasc (EC 1.9.3.1) activity was measured as an indicator of the capacity for substrate oxidation.2. Insulin increased weight gain by up to 57% (P < 0.01 for all studies). Metabolizable energy intake (kJ/d) was also consistently higher in the treated groups, by up to 34% (P < 0.01 for all studies). The excess weight gained by the insulin-treated rats was predominantly due to fat deposition.3. Energy expenditure, calculated as the difference between metabolizable intake and carcass energy gain. was expressed on a whole-body basis, or relative to either metabolic body size (kg body-weight0.75) or fat-free mass. Insulin consistently raised energy expenditure, regardless of the method of expression, but this change reached statistical significance in only two of the nine comparisons.4. Cytochrome c oxidase activity was not affected by insulin treatment in either interscapular brown adipose tissue or gastrocnemius muscle. In liver, total enzyme activity (U/tissue) was increased from 2928 (se 162) in the controls to 3940 (se 294) in the treated group (P < 0.02), but specific activity (U/mg protein) was unchanged.5. It is concluded that, despite causing substantial hyperphagia, insulin treatment only slightly increases energy expenditure in rats. The costs of increased tissue deposition may account for this change.


1990 ◽  
Vol 258 (2) ◽  
pp. E347-E351 ◽  
Author(s):  
W. G. Abbott ◽  
B. V. Howard ◽  
G. Ruotolo ◽  
E. Ravussin

A high-dietary fat intake may be an important environmental factor leading to obesity in some people. The mechanism could be either a decrease in energy expenditure and/or an increase in caloric intake. To determine the relative importance of these mechanisms we measured 24-h energy expenditure in a whole body calorimeter in 14 nondiabetic subjects and in six subjects with non-insulin-dependent diabetes mellitus, eating isocaloric, weight-maintenance, high-fat, and high-carbohydrate diets. All subjects were Pima Indians. In nondiabetics, the mean total 24-h energy expenditure was similar (2,436 +/- 103 vs. 2,359 +/- 82 kcal/day) on high-fat and high-carbohydrate diets, respectively. The means for sleeping and resting metabolic rates, thermic effect of food, and spontaneous physical activity were unchanged. Similar results were obtained in the diabetic subjects. In summary, using a whole body calorimeter, we found no evidence of a decrease in 24-h energy expenditure on a high-fat diet compared with a high-carbohydrate diet.


2019 ◽  
Vol 126 (3) ◽  
pp. 681-690 ◽  
Author(s):  
John Hattersley ◽  
Adrian J. Wilson ◽  
Robert M. Gifford ◽  
Rin Cobb ◽  
C. Doug Thake ◽  
...  

This paper reports the metabolic energy changes in six women who made the first unsupported traverse of Antarctica, covering a distance of 1,700 km in 61 days, hauling sledges weighing up to 80 kg. Pre- and postexpedition, measurements of energy expenditure and substrate utilization were made on all six members of the expedition over a 36-h period in a whole body calorimeter. During the study, subjects were fed an isocaloric diet: 50% carbohydrate, 35% fat, and 15% protein. The experimental protocol contained pre- and postexpedition measurement, including periods of sleep, rest, and three periods of standardized stepping exercise at 80, 100, and 120 steps/min. A median (interquartile range) decrease in the lean and fat weight of the subjects of 1.4 (1.0) and 4.4 (1.8) kg, respectively (P < 0.05) was found, using air-displacement plethysmography. No statistically significant difference was found between pre- and postexpedition values for sleeping or resting metabolic rate, nor for diet-induced thermogenesis. A statistically significant difference was found in energy expenditure between the pre- and postexpedition values for exercise at 100 [4.7 (0.23) vs. 4.4 (0.29), P < 0.05] and 120 [5.7 (0.46) vs. 5.5 (0.43), P < 0.05] steps/min; a difference that disappeared when the metabolic rate values were normalized to body weight. The group was well matched for the measures studied. Whereas a physiological change in weight was seen, the lack of change in metabolic rate measures supports a view that women appropriately nourished and well prepared can undertake polar expeditions with a minimal metabolic energy consequence. NEW & NOTEWORTHY This is the first study on the metabolic energy consequences for women undertaking expeditionary polar travel. The results show that participant selection gave a “well-matched” group, particularly during exercise. Notwithstanding this, individual differences were observed and explored. The results show that appropriately selected, trained, and nourished women can undertake such expeditions with no change in their metabolic energy requirements during rest or while undertaking moderate exercise over a sustained period of time.


1984 ◽  
Vol 52 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Helen M. Dallosso ◽  
W. P. T. James

1. Eight young men of normal weight were maintained for 1 week on a weight-maintenance diet followed by a 1-week period of over-feeding with extra fat designed to increase energy intake by 50%. Two 36 h calorimetry sessions with low and high physical activities were included in each feeding period. Faecal and urine collections permitted checks on energy malabsorption and nitrogen excretion.2. Over-feeding led to increases in body-weight, faecal energy and N excretion and in estimated N retention. Faecal energy outputs on the maintenance and over-feeding diets were 5 and 4.4% of the respective gross energy intakes.3. Energy expenditure on fat over-feeding increased by 5.6% on the low-activity regimen and 6.4% on the high-activity regimen. This amounted, in terms of the extra energy intake, to 9 and 11 % on the inactive and active schedules respectively. The increase affected day- and night-time rates of energy expenditure plus the basal metabolic rate. Individuals with a low percentage body fat showed the greatest response to over-feeding.4. Nutrient-balance studies derived from calorimetry suggested that fat over-feeding led to substantial fat deposition with no evidence of sparing of carbohydrate oxidation. The theoretical cost of depositing dietary fat was exceeded, suggesting that regulatory thermogenic mechanisms may have been stimulated to a small extent.


2002 ◽  
Vol 87 (2) ◽  
pp. 131-139 ◽  
Author(s):  
S. Sinaud ◽  
C. Montaurier ◽  
D. Wils ◽  
J. Vernet ◽  
M. Brandolini ◽  
...  

The metabolizable energy content of low-digestible carbohydrates does not correspond with their true energy value. The aim of the present study was to determine the tolerance and effects of two polyols on digestion and energy expenditure in healthy men, as well as their digestible, metabolizable and net energy values. Nine healthy men were fed for 32 d periods a maintenance diet supplemented either with dextrose, Lycasin®HBC (Roquette Frères, Lestrem, France), or the hydrogenated polysaccharide fraction of Lycasin®HBC, at a level of 100 g DM/d in six equal doses per d according to a 3×3 Latin square design with three repetitions. After a 20 d progressive adaptation period, food intake was determined for 12 d using the duplicate meal method and faeces and urine were collected for 10 d for further analyses. Subjects spent 36 h in one of two open-circuit whole-body calorimeters with measurements during the last 24 h. Ingestion of the polyols did not cause severe digestive disorders, except excessive gas emission, and flatulence and gurgling in some subjects. The polyols induced significant increases in wet (+45 and +66 % respectively, P<0·01) and dry (+53 and +75 % respectively, P<0·002) stool weight, resulting in a 2 % decrease in dietary energy digestibility (P<0·001). They resulted also in significant increases in sleeping (+4·1 %, P<0·03) and daily energy expenditure (+2·7 and +2·9 % respectively, P<0·02) compared with dextrose ingestion. The apparent energy digestibility of the two polyols was 0·82 and 0·79 respectively, their metabolizable energy value averaged 14·1 kJ/g DM, and their net energy value averaged 10·8 kJ/g DM, that is, 35 % less than those of sucrose and starch.


2003 ◽  
Vol 42 (02) ◽  
pp. 55-62 ◽  
Author(s):  
A. Staudenherz ◽  
Th. Leitha

SummaryAim: The specific excretion pathways of iodine may cause several diagnostic pitfalls. Information concerning their relative frequency and possible consequences in daily routine is scarce. Methods: A total of 500 131I whole-body scans from 300 consecutive patients with differentiated thyroid cancer of two centers were analyzed. The reports were validated with other diagnostic findings during follow-up for 12 to 85 months. 126 scans (25.2%) were performed at the time of discharge after high dose 131I therapy (2960-11100 MBq). Residual activity was approximately 185 MBq 131I at the time of imaging. 374 scans (74.8%) were performed in ambulatory patients 48 h after oral administration of 74 MBq131I. All patients revealed TSH concentrations >35 U/ml. Results: A computerized literature search revealed 74 entities that may cause a false-positive whole body scan, from which 12 were present in our cohort. The uptake patterns could be epitomized into nine clinical settings. Apart from the significantly higher frequency of cervical activity in residual thyroid tissue in patients after high dose therapy no statistically significant difference was found between high and low dose patients. The most frequent combination was stomach and colon activity, which was seen in 15.3% of all scans. Additional images or diagnostic procedures were necessary in 59.3%. Only one patient with a kidney metastasis was initially misinterpreted. The major clinical problems included: contamination, superimposed intestinal retention, hot nose, isolated peripheral metastasis, unexpected breast activity and kidney metastasis. Conclusion: 131I whole-body scanning has to be performed with painstaking precision and full awareness of even the rarest pitfalls in order to remain a sensitive and specific technique for diagnosing metastases from differentiated thyroid carcinoma.


2019 ◽  
Vol 109 (3) ◽  
pp. 554-565 ◽  
Author(s):  
Leticia C R Pereira ◽  
Sarah A Purcell ◽  
Sarah A Elliott ◽  
Linda J McCargar ◽  
Rhonda C Bell ◽  
...  

ABSTRACT Background Accurate assessment of energy expenditure may support weight-management recommendations. Measuring energy expenditure for each postpartum woman is unfeasible; therefore, accurate predictive equations are needed. Objectives This study compared measured with predicted resting energy expenditure (REE) and total energy expenditure (TEE) in postpartum women. Methods This was a longitudinal observational study. REE was measured at 3 mo postpartum (n = 52) and 9 mo postpartum (n = 49), whereas TEE was measured once at 9 mo postpartum (n = 43) by whole body calorimetry (WBC). Measured REE (REEWBC) was compared with 17 predictive equations; measured TEE plus breast milk energy output (ERWBC) was compared with the estimated energy requirements/Dietary Reference Intakes equation (EERDRI). Fat and fat-free mass were measured by dual-energy X-ray absorptiometry. Group-level agreement was assessed by the Pearson correlation, paired t test, and Bland-Altman (bias) analyses. Individual-level accuracy was assessed with the use of Bland-Altman limits of agreement, and by the percentage of women with predicted energy expenditure within 10% of measured values (“accuracy”). Results The cohort was primarily Caucasian (90%). At a group level, the best equation predicting REEWBC was the DRI at 3 mo postpartum (–7 kcal, –0.1%; absolute and percentage bias, respectively), and the Harris-Benedict at 9 mo postpartum (–17 kcal, –0.5%). At an individual level, the Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU) height and weight equation was the most accurate at 3 mo postpartum (100% accuracy) and 9 mo postpartum (98% accuracy), with the smallest limits of agreement. Equations including body composition variables were not more accurate. Compared with ERWBC, EERDRI bias was –36 kcal, with inaccurate predictions in 33% of women. Conclusions Many REE predictive equations were accurate for group assessment, with the FAO/WHO/UNU height and weight equation having the highest accuracy for individuals. EERDRI performed well at a group level, but inaccurately for 33% of women. A greater understanding of the physiology driving energy expenditure in the postpartum period is needed to better predict TEE and ultimately guide effective weight-management recommendations.


1989 ◽  
Vol 66 (2) ◽  
pp. 644-652 ◽  
Author(s):  
J. Seale ◽  
C. Miles ◽  
C. E. Bodwell

Attempts to estimate human energy expenditure by use of doubly labeled water have produced three methods currently used for calculating carbon dioxide production from isotope disappearance data: 1) the two-point method, 2) the regression method, and 3) the integration method. An ideal data set was used to determine the error produced in the calculated energy expenditure for each method when specific variables were perturbed. The analysis indicates that some of the calculation methods are more susceptible to perturbations in certain variables than others. Results from an experiment on one adult human subject are used to illustrate the potential for error in actual data. Samples of second void urine, 24-h urine, and breath collected every other day for 21 days are used to calculate the average daily energy expenditure by three calculation methods. The difference between calculated energy expenditure and metabolizable energy on a weight-maintenance diet is used to estimate the error associated with the doubly labeled water method.


1984 ◽  
Vol 52 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Helen M. Dallosso ◽  
W. P. T. James

1. Studies have claimed that an enhancement of the thermic effect of a meal (TEM) is an important adaptive mechanism to account for energy wastage during over-feeding.2. Eight healthy normal-weight young men were studied during 1 week on a weight-maintenance diet and again during 1 week when they were over-fed by 50% with fat. During each experimental week, the subject occupied a whole-body indirect calorimeter at 26° for two separate periods of 36 h. The periods differed in the amount of exercise they contained. The thermic responses to the identical meals were measured during rest on one occasion and during exercise on a bicycle ergometer on the other.3. On the maintenance diet the absolute TEM (kJ/min) was 1.51 (SD 0.42) at rest and 1.31 (SD 0.75) during exercise (no significant difference). The equivalent values (kJ/min) on the over-feeding diet were 2.2 (SD 0.48) and 1.97 (SD 0.64) (no significant difference).4. The absence of a significant interaction between TEM and exercise was also demonstrated by the fact that the effect of over-feeding on total 24 h energy expenditure was unaffected by the subject's level of physical activity while in the calorimeter.5. In conclusion, the present study has provided no evidence to support the hypothesis that TEM is enhanced during exercise.


2020 ◽  
Author(s):  
Lucas S. Ryan ◽  
Jeni Gerberich ◽  
Uroob Haris ◽  
ralph mason ◽  
Alexander Lippert

<p>Regulation of physiological pH is integral for proper whole-body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, comprised of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8-8.4, making it viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished both using common fluorimetry and advanced optical imaging methods. Using an IVIS Spectrum, pH can be quantified through tissue with Ratio-pHCL-1, which has been shown in vitro and precisely calibrated in sacrificed mouse models. Initial studies showed that intraperitoneal injections of Ratio-pHCL-1 into sacrificed mice produce a photon flux of more than 10^10 photons per second, and showed a significant difference in ratio of emission intensities between pH 6.0, 7.0, and 8.0.</p> <b></b><i></i><u></u><sub></sub><sup></sup><br>


Sign in / Sign up

Export Citation Format

Share Document