Peronosclerospora philippinensis (Philippine downy mildew of maize).

Author(s):  
Fe M. Dela Cueva ◽  
Alyssa M. De Castro ◽  
Rachele L. De Torres

Abstract Peronosclerospora philippinensis, a causal pathogen of maize downy mildews, is one of the major maize diseases reported in some maize-growing countries, especially in the Philippines. High disease incidence has been reported in many parts in the country specifically in northern Luzon and in many parts of Mindanao despite breakthroughs in controlling or mitigating the disease using cultural and chemical control (Pascual et al., 2005). P. philippinensis is considered the most virulent of the downy mildew pathogens affecting maize, causing substantial losses to crop production (Murray, 2009). Under normal conditions, a 40-60% yield reduction is observed; however, favourable conditions for disease development can amplify these losses to 80-100% (Exconde and Raymundo, 1974). As the pathogen is able to survive in seeds, is able to spread rapidly and occasionally forms resting spores that can survive for more than 1 year, the pathogen has the potential to become a threat to local maize production in warm temperate and tropical areas.

2021 ◽  
Author(s):  
Fe M. dela Cueva ◽  
Alyssa M. de Castro ◽  
Rachele L. de Torres

Abstract Peronosclerospora philippinensis, a causal pathogen of maize downy mildews, is one of the major maize diseases reported in some maize-growing countries, especially in the Philippines. High disease incidence has been reported in many parts in the country specifically in northern Luzon and in many parts of Mindanao despite breakthroughs in controlling or mitigating the disease using cultural and chemical control (Pascual et al., 2005). P. philippinensis is considered the most virulent of the downy mildew pathogens affecting maize, causing substantial losses to crop production (Murray, 2009). Under normal conditions, a 40-60% yield reduction is observed; however, favourable conditions for disease development can amplify these losses to 80-100% (Exconde and Raymundo, 1974). As the pathogen is able to survive in seeds, is able to spread rapidly and occasionally forms resting spores that can survive for more than 1 year, the pathogen has the potential to become a threat to local maize production in warm temperate and tropical areas.


2020 ◽  
Author(s):  
Shengli Liu ◽  
Wenbin Wu

<p>Increasing drought event is one of the major threats to yield stability and crop production. However, the precise quantification of crop response to such extreme weather is still in lack. Unlike the deterministic researches of drought effects, we propose an insightful probabilistic perspective to quantify drought impacts on maize yield across China. The county-specific combination of annual maize yield anomaly and standardized precipitation evapotranspiration index (SPEI) across its growing season during 1981-2010 was utilized to build a copula-based probabilistic diagram, for the purpose to predict yield loss risk under different drought types. The results reveal that, when compared with the expected long-term yield, the reduction of maize yield and its uncertainty was in line with the drought severity across the growth season, with yield reduced by -5.14%, -8.05% and -3.94% under moderately dry, severely dry, and extremely dry, respectively. Despite the spatial pattern of SPEI existed varying timescales in determining yield anomaly across different counties, the number of counties where maize experienced drought with a response time starts from June and July accounted for 55.28% of counties across China, and that drought with one month duration occupied 50.29%. A considerable gap in the likelihood of maize yield reduction was detected under drought and under non-drought conditions, which further confirmed the negative impacts of drought on maize yield. Moreover, the conditional estimation revealed that the semi-arid region was more susceptible to the drought-induced yield loss risk of maize in comparison to other regions. The probability of yield loss for maize amplified according to the drought severity along with the significant differences (P < 0.05) among the extreme, severely and moderately drought conditions across all of these sub-regions. Our results highlight the improving knowledge of drought on crop yield anomaly and consequent adaptation was essential for the decision making in coping with extreme weather in agricultural production.</p>


Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 265-275 ◽  
Author(s):  
Sharifa G. Crandall ◽  
Alamgir Rahman ◽  
Lina M. Quesada-Ocampo ◽  
Frank N. Martin ◽  
Guillaume J. Bilodeau ◽  
...  

Downy mildews are plant pathogens that damage crop quality and yield worldwide. Among the most severe and notorious crop epidemics of downy mildew occurred on grapes in the mid-1880s, which almost destroyed the wine industry in France. Since then, there have been multiple outbreaks on sorghum and millet in Africa, tobacco in Europe, and recent widespread epidemics on lettuce, basil, cucurbits, and spinach throughout North America. In the mid-1970s, loss of corn to downy mildew in the Philippines was estimated at US$23 million. Today, crops that are susceptible to downy mildews are worth at least $7.5 billion of the United States’ economy. Although downy mildews cause devastating economic losses in the United States and globally, this pathogen group remains understudied because they are difficult to culture and accurately identify. Early detection of downy mildews in the environment is critical to establish pathogen presence and identity, determine fungicide resistance, and understand how pathogen populations disperse. Knowing when and where pathogens emerge is also important for identifying critical control points to restrict movement and to contain populations. Reducing the spread of pathogens also decreases the likelihood of sexual recombination events and discourages the emergence of novel virulent strains. A major challenge in detecting downy mildews is that they are obligate pathogens and thus cannot be cultured in artificial media to identify and maintain specimens. However, advances in molecular detection techniques hold promise for rapid and in some cases, relatively inexpensive diagnosis. In this article, we discuss recent advances in diagnostic tools that can be used to detect downy mildews. First, we briefly describe downy mildew taxonomy and genetic loci used for detection. Next, we review issues encountered when identifying loci and compare various traditional and novel platforms for diagnostics. We discuss diagnosis of downy mildew traits and issues to consider when detecting this group of organisms in different environments. We conclude with challenges and future directions for successful downy mildew detection.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1589
Author(s):  
Gamil Gamal ◽  
Magdy Samak ◽  
Mohamed Shahba

Climate change implications are a severe risk to food security and the economy. Global warming could disturb the production of both rainfed and irrigated agriculture thru the amplify of yield water requests in many areas. In this study, the fast-track projections available through the Inter-Sectors Impact Model Intercomparison Project (ISI-MIP) were presented and analyzed to assess the effects of two global warming (GW) levels (1.5 and 2.0 °C) on the maize and wheat yields in Egypt. Outcomes proposed spatial variations in the effects of temperature change on crop yield. Compared with the referenced situation, an observed national average change in wheat yield about 5.0% (0.0% to 9.0%) and 5.0% (−3.0% to 14.0%) under GW1.5 and GW2.0 respectively. While for maize yield, the change in national average about −1.0% (−5.0% to 3.0%) and −4.0% (−8.0% to 2.0%) under GW1.5 and GW2.0 respectively. GW1.5 could be helpful for wheat yield, but the positive effect decayed when the warming level reached 2.0 °C overhead the pre-industrial level. Nevertheless, the possible deviations to Egypt’s maize production under the GW1.5 and GW2.0 scenarios are unclear where the models do not agree with the sign of change. Adjusting the temperature rise within 1.5 °C would diminish the yield reduction, as it is an extraordinary priority to safeguard crop production. To achieve Progress of innovative agronomic managing plans and swapping to additional drought-resistant crops may be valuable for coping with climate change in regions vulnerable to yield decline.


Plant Disease ◽  
2020 ◽  
Author(s):  
Nisha Nisha ◽  
Katalin Körösi ◽  
Mihály Perczel ◽  
Ahmed Ibrahim Alrashid Yousif ◽  
Rita Bán

Downy mildew of sunflower (Helianthus annuus L.) is caused by Plasmopara halstedii (Farl.) Berl. et de Toni, leading to significant losses in crop production worldwide. The number of new and more aggressive pathotypes has increased rapidly over the last 10 years in Europe (Virányi et al. 2015, Bán et al. 2018), therefore, constantly monitoring the distribution of races is an important task. As part of regular surveys in June 2019, severe downy mildew was identified in some regions, appearing as chlorotic lesions along the veins of the adaxial side and white sporulation on the abaxial side of the leaves of severely stunted hybrids containing PI6 and PI7 resistance genes. The identification of the pathogen was performed microscopically based on morphological characteristics (average size of sporangia: 28x20 µm). Disease incidence (the ratio of diseased plants) ranged between 10 and 30% per field in three regions and resulted in moderate yield loss. Isolates (defined as a lesion per leaf) were collected from 4 to 8 infected leaves of each hybrid by region and stored at -70°C. Two, one and one isolates of P. halstedii were selected and characterized from the southeastern (Békés County), northern (Nógrád County) and northeastern (Borsod-Abaúj-Zemplén County) regions of Hungary, respectively. The pathotype of the four isolates was determined using the international standardized nomenclature method reviewed by Trojanová et al. (2017), including nine sunflower differential inbred lines (HA-304, RHA-265, RHA-274, PMI-3, PM-17, 803-1, HAR-4, QHP2 and HA-335). Zoosporangia from frozen sunflower leaves were washed off into bidistilled water and the concentration was adjusted to 3.5x104 sporangia/ml using a hemocytometer. Three-day-old seedlings with a radical of 1 to 1.5 cm long were immersed in the sporangial suspension and kept at 16°C overnight (Cohen and Sackston 1973). Inoculated seedlings were planted into trays containing clear moistened perlite (d = 4 mm) and grown in a growth chamber with a photoperiod of 12 h. The experiment was carried out twice with each isolate using 15 seeds/differential line with two replicates. Bidistilled water was sprayed on the plants 9 days after inoculation, and then trays were covered with a black polyethylene bag and maintained at 19°C overnight to induce sporulation. The first disease assessment was done based on cotyledons bearing white sporulation. Next, a second evaluation was performed 21 days after inoculation assessing stunting of the plants, chlorotic lesions on true leaves and damping-off. All 4 isolates examined caused disease on differential lines HA-304, RHA-265, RHA-274, PMI-3, PM-17 and HA-335, whereas the other lines showed no symptoms and signs of sunflower downy mildew. As a result, it was concluded that the presence of P. halstedii pathotype 734 was confirmed. This pathotype is likely widespread in Hungary as it could be detected from three different regions. Moreover, the possibility that pathotype 734 is present in Hungary has been raised before (Iwebor et al. 2018). This pathotype is already widespread in the USA and Russia and is considered to be highly aggressive, since it was able to infect hybrids with resistance genes PI6 and PI7 (Iwebor et al. 2018, Spring 2019). To our knowledge, this is the first report of pathotype 734 of P. halstedii in Hungary and Central Europe. Continuous monitoring and incorporation of new resistance genes into sunflower hybrids are essential steps in the future to control P. halstedii.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2921-2927
Author(s):  
Renata Rodrigues Robaina ◽  
Talita Vigo Longhi ◽  
Douglas Mariani Zeffa ◽  
Leandro Simões Azeredo Gonçalves ◽  
Rui Pereira Leite

Bacterial leaf streak (BLS), caused Xanthomonas vasicola pv. vasculorum (Xvv), has become a major concern for maize production, mainly in the United States and South America. Therefore, this study aimed to establish a protocol for Xvv inoculation in young maize plants under controlled conditions and to develop and validate a diagrammatic scale for evaluation of maize hybrids in regard to BLS resistance. The study was carried out in three steps: the establishment of a protocol for inoculation of Xvv in young maize plants under controlled conditions; the development and validation of a diagrammatic scale for BLS severity evaluation; and the screening for BLS resistance of 45 hybrids using the proposed protocol for bacterial inoculation and the diagrammatic scale developed in this study. Besides reproducing a more natural Xvv infection, the bacterial suspension spraying without injury inoculation method induced higher disease incidence and severity, as well as reproducibility of results under the experimental conditions established in this study. The proposed diagrammatic scale allowed evaluating BLS severity with up to 97.49% of the leaf area affected by the disease. Further, the use of the diagrammatic scale resulted in an increase of accuracy from 0.909 up to 0.992. The reaction of 45 maize hybrids to BLS allowed establishing six major groups of susceptibility to the disease. The most resistant maize hybrids to BLS formed a group of 13 hybrids, with disease severity below 5%.


Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 93-103 ◽  
Author(s):  
B. G. J. S. Sonneveld ◽  
M. A. Keyzer ◽  
D. Ndiaye

Abstract. Land degradation has been a persistent problem in Senegal for more than a century and by now has become a serious impediment to long-term development. In this paper, we quantify the impact of land degradation on crop yields using the results of a nationwide land degradation assessment. For this, the study needs to address two issues. First, the land degradation assessment comprises qualitative expert judgements that have to be converted into more objective, quantitative terms. We propose a land degradation index and assess its plausibility. Second, observational data on soils, land use, and rainfall do not provide sufficient information to isolate the impact of land degradation. We, therefore, design a pseudo-experiment that for sites with otherwise similar circumstances compares the yield of a site with and one without land degradation. This pairing exercise is conducted under a gradual refining of the classification of circumstances, until a more or less stable response to land degradation is obtained. In this way, we hope to have controlled sufficiently for confounding variables that will bias the estimation of the impact of land degradation on crop yields. A small number of shared characteristics reveal tendencies of "severe" land degradation levels being associated with declining yields as compared to similar sites with "low" degradation levels. However, as we zoom in at more detail some exceptions come to the fore, in particular in areas without fertilizer application. Yet, our overall conclusion is that yield reduction is associated with higher levels of land degradation, irrespective of whether fertilizer is being applied or not.


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 549-554 ◽  
Author(s):  
L. V. Madden ◽  
M. A. Ellis ◽  
N. Lalancette ◽  
G. Hughes ◽  
L. L. Wilson

An electronic warning system for grape downy mildew— based on models for the infection of leaves of Vitis lambrusca, production of sporangia by Plasmopara viticola in lesions, and sporangial survival—was tested over 7 years in Ohio. Grapevines were sprayed with metalaxyl plus mancozeb (Ridomil MZ58) when the warning system indicated that environmental conditions were favorable for sporulation and subsequent infection. Over the 7 years, plots were sprayed from one to four times according to the warning system, and from four to 10 times according to the standard calendar-based schedule (depending on the date of the initiation of the experiment). The warning system resulted in yearly reductions of one to six sprays (with median of three sprays). Disease incidence (i.e., proportion of leaves with symptoms) in unsprayed plots at the end of the season ranged from 0 to 86%, with a median of 68%. Incidence generally was very similar for the warning-system and standard-schedule treatments (median of 7% of the leaves with symptoms), and both of these incidence values were significantly lower (P < 0.05) than that found for the unsprayed control, based on a generalized-linear-model analysis. Simplifications of the disease warning system, where sprays were applied based only on the infection or sporulation components of the system, were also effective in controlling the disease, although more fungicide applications sometimes were applied. Effective control of downy mildew, therefore, can be achieved with the use of the warning system with fewer sprays than a with a standard schedule.


2016 ◽  
Vol 96 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Yunfei* Jiang ◽  
Claude D. Caldwell

Camelina [Camelina sativa (L.) Crantz] has potential in aquaculture, livestock feed production, and the biofuel industry. It is necessary to determine the appropriate production technology for the newly introduced crop under different environmental conditions. The objective of this 2-year study was to measure the response of five camelina genotypes in terms of seed yield, yield components, and disease incidence to applied nitrogen (N) at multiple sites in the Maritime provinces of eastern Canada. The factorial experiment was set up as a randomized complete block design. The two factors were six N rates (0, 25, 50, 100, 150, and 200 kg ha−1 N) and five genotypes of camelina (Calena, CDI002, CDI005, CDI007, and CDI008). The interactive effect of N rates and genotypes was considered. Results showed that camelina, which is usually considered a low-input crop, responded positively to increased applied N at rates up to 200 kg ha−1 N. Seed yield responded differently to applied N rates depending on genotype. Branch and pod development were decisive for seed yield. The advanced line CDI007 had the highest yield potential among the five genotypes. Downy mildew infection was positively correlated with applied N rates; however, seed yield was not significantly affected by downy mildew infection.


Sign in / Sign up

Export Citation Format

Share Document