scholarly journals Selenium in cancer prevention: a review of the evidence and mechanism of action

2005 ◽  
Vol 64 (4) ◽  
pp. 527-542 ◽  
Author(s):  
Margaret P. Rayman

Se is an unusual trace element in having its own codon in mRNA that specifies its insertion into selenoproteins as selenocysteine (SeCys), by means of a mechanism requiring a large SeCys-insertion complex. This exacting insertion machinery for selenoprotein production has implications for the Se requirements for cancer prevention. If Se may protect against cancer, an adequate intake of Se is desirable. However, the level of intake in Europe and some parts of the world is not adequate for full expression of protective selenoproteins. The evidence for Se as a cancer preventive agent includes that from geographic, animal, prospective and intervention studies. Newly-published prospective studies on oesophageal, gastric-cardia and lung cancer have reinforced previous evidence, which is particularly strong for prostate cancer. Interventions with Se have shown benefit in reducing the risk of cancer incidence and mortality in all cancers combined, and specifically in liver, prostate, colo-rectal and lung cancers. The effect seems to be strongest in those individuals with the lowest Se status. As the level of Se that appears to be required for optimal effect is higher than that previously understood to be required to maximise the activity of selenoenzymes, the question has been raised as to whether selenoproteins are involved in the anti-cancer process. However, recent evidence showing an association between Se, reduction of DNA damage and oxidative stress together with data showing an effect of selenoprotein genotype on cancer risk implies that selenoproteins are indeed implicated. The likelihood of simultaneous and consecutive effects at different cancer stages still allows an important role for anti-cancer Se metabolites such as methyl selenol formed from γ-glutamyl-selenomethyl-SeCys and selenomethyl-SeCys, components identified in certain plants and Se-enriched yeast that have anti-cancer effects. There is some evidence that Se may affect not only cancer risk but also progression and metastasis. Current primary and secondary prevention trials of Se are underway in the USA, including the Selenium and Vitamin E Cancer Prevention Trial (SELECT) relating to prostate cancer, although a large European trial is still desirable given the likelihood of a stronger effect in populations of lower Se status.

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2662
Author(s):  
Anna Palomar-Cros ◽  
Ana Espinosa ◽  
Kurt Straif ◽  
Beatriz Pérez-Gómez ◽  
Kyriaki Papantoniou ◽  
...  

Nighttime fasting has been inconclusively associated with a reduced risk of cancer. The purpose of this study was to investigate this association in relation to prostate cancer risk. We examined data from 607 prostate cancer cases and 848 population controls who had never worked in night shift work from the Spanish multicase-control (MCC) study, 2008–2013. Through an interview, we collected circadian information on meal timing at mid-age. We estimated odds ratios (OR) and 95% confidence intervals (CI) with unconditional logistic regression. After controlling for time of breakfast, fasting for more than 11 h overnight (the median duration among controls) was associated with a reduced risk of prostate cancer compared to those fasting for 11 h or less (OR = 0.77, 95% 0.54–1.07). Combining a long nighttime fasting and an early breakfast was associated with a lower risk of prostate cancer compared to a short nighttime fasting and a late breakfast (OR = 0.54, 95% CI 0.27–1.04). This study suggests that a prolonged nighttime fasting duration and an early breakfast may be associated with a lower risk of prostate cancer. Findings should be interpreted cautiously and add to growing evidence on the importance of chrononutrition in relation to cancer risk.


2021 ◽  
Vol 22 (4) ◽  
pp. 1680
Author(s):  
Mariusz Dąbrowski

In the last decade, cancer became the leading cause of death in the population under 65 in the European Union. Diabetes is also considered as a factor increasing risk of cancer incidence and mortality. Type 2 diabetes is frequently associated with being overweight and obese, which also plays a role in malignancy. Among biological mechanisms linking diabetes and obesity with cancer hyperglycemia, hyperinsulinemia, insulin resistance, increased levels of growth factors, steroid and peptide hormones, oxidative stress and increased activity of pro-inflammatory cytokines are listed. Antidiabetic medications can modulate cancer risk through directly impacting metabolism of cancer cells as well as indirectly through impact on risk factors of malignancy. Some of them are considered beneficial (metformin and thiazolidinedions—with the exception of bladder cancer); on the other hand, excess of exogenous insulin may be potentially harmful, while other medications seem to have neutral impact on cancer risk. Inhibitors of the sodium-glucose cotransporter-2 (SGLT-2) are increasingly used in the treatment of type 2 diabetes. However, their association with cancer risk is unclear. The aim of this review was to analyze the anticancer potential of this class of drugs, as well as risks of site-specific malignancies associated with their use.


2015 ◽  
Vol 27 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jeannette M. Schenk ◽  
Cathee Till ◽  
Ann W. Hsing ◽  
Frank Z. Stanczyk ◽  
Zhihong Gong ◽  
...  

2008 ◽  
Vol 123 (5) ◽  
pp. 1154-1159 ◽  
Author(s):  
Jiyoung Ahn ◽  
Roxana Moslehi ◽  
Stephanie J. Weinstein ◽  
Kirk Snyder ◽  
Jarmo Virtamo ◽  
...  

2021 ◽  
Author(s):  
Antonio Bandala-Jacques ◽  
Kevin Daniel Castellanos Esquivel ◽  
Fernanda Pérez-Hurtado ◽  
Cristobal Hernández-Silva ◽  
Nancy Reynoso-Noverón

BACKGROUND Screening for prostate cancer has long been a debated, complex topic. The use of risk calculators for prostate cancer is recommended for determining patients’ individual risk of cancer and the subsequent need for a prostate biopsy. These tools could lead to a better discrimination of patients in need of invasive diagnostic procedures and for optimized allocation of healthcare resources OBJECTIVE To systematically review available literature on current prostate cancer risk calculators’ performance in healthy population, by comparing the impact factor of individual items on different cohorts, and the models’ overall performance. METHODS We performed a systematic review of available prostate cancer risk calculators targeted at healthy population. We included studies published from January 2000 to March 2021 in English, Spanish, French, Portuguese or German. Two reviewers independently decided for or against inclusion based on abstracts. A third reviewer intervened in case of disagreements. From the selected titles, we extracted information regarding the purpose of the manuscript, the analyzed calculators, the population for which it was calibrated, the included risk factors, and the model’s overall accuracy. RESULTS We included a total of 18 calculators across 53 different manuscripts. The most commonly analyzed ones were they PCPT and ERSPC risk calculators, developed from North American and European cohorts, respectively. Both calculators provided high precision for the diagnosis of aggressive prostate cancer (AUC as high as 0.798 for PCPT and 0.91 for ERSPC). We found 9 calculators developed from scratch for specific populations, which reached diagnostic precisions as high as 0.938. The most commonly included risk factors in the calculators were age, PSA levels and digital rectal examination findings. Additional calculators included race and detailed personal and family history CONCLUSIONS Both the PCPR and the ERSPC risk calculators have been successfully adapted for cohorts other than the ones they were originally created for with no loss of diagnostic accuracy. Furthermore, designing calculators from scratch considering each population’s sociocultural differences has resulted in risk tools that can be well adapted to be valid in more patients. The best risk calculator for prostate cancer will be that which was has been calibrated for its intended population and can be easily reproduced and implemented CLINICALTRIAL CRD42021242110


2001 ◽  
Vol 39 (1) ◽  
pp. 12-18 ◽  
Author(s):  
Marian L. Neuhouser ◽  
Alan R. Kristal ◽  
Ruth E. Patterson ◽  
Phyllis J. Goodman ◽  
Ian M. Thompson

Sign in / Sign up

Export Citation Format

Share Document