Long-Term Application of Chemical Fertilizers and Rice Straw on Soil Aluminum Toxicity

2010 ◽  
Vol 42 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Ruijun Qin ◽  
Fuxing Chen ◽  
Jusheng Gao
BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Huan-Xin Jiang ◽  
Lin-Tong Yang ◽  
Yi-Ping Qi ◽  
Yi-Bin Lu ◽  
Zeng-Rong Huang ◽  
...  

2002 ◽  
Vol 56 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Jeffrey A. Bird ◽  
Alison J. Eagle ◽  
William Horwath ◽  
Mike W. Hair ◽  
Eric Zilbert ◽  
...  

10.5109/4694 ◽  
2005 ◽  
Vol 50 (2) ◽  
pp. 861-870
Author(s):  
Kazuhiko Egashira ◽  
Jing-Long Han ◽  
Noriko Satake ◽  
Tomomi Nagayama ◽  
M.Joinul Abedin Mian ◽  
...  

2012 ◽  
Vol 92 (3) ◽  
pp. 419-428 ◽  
Author(s):  
X. H. Li ◽  
X. Z. Han ◽  
H. B. Li ◽  
C. Song ◽  
J. Yan ◽  
...  

Li, X. H., Han, X. Z., Li, H. B., Song, C., Yan, J. and Liang, Y. 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Can. J. Soil Sci. 92: 419–428. The effects of 21-yr of application of chemical fertilizers, composted pig manure (CPM) alone, and chemical fertilizers combined with compost on soil chemical and biological properties were investigated. Soil samples (0–20cm) were collected from a long-term fertilization experiment under corn (Zea mays L.) production in 2006, prior to seeding, at the corn tasseling stage and following harvest. Fertilizer treatments were: no fertilizer (CK), nitrogen fertilizer alone (N), N + phosphorus (NP), N + P + potassium (NPK), CPM, N + CPM, N + P + CPM (NP + CPM), and N + P + K + CPM (NPK + CPM). Long-term application of N alone resulted in a reduction of soil pH by 0.38 units and reduced the available P concentration compared with CK. An increase in soil pH was seen with CPM alone and NPK + CPM. Both fertilizers sources, singly and combined, increased the total N and available N concentrations. Total P and total K concentrations were greatest with the NPK + CPM treatment. All fertilizer treatments increased the soil organic carbon (SOC), light fraction organic carbon (LFOC) and microbial biomass carbon (MBC) concentrations significantly (P < 0.05) at the tasseling stage. The NPK + CPM treatment showed the greatest increase in SOC (12%), LFOC (78%) and MBC (44%) concentrations, compared with CK. Soil enzyme activities (invertase, urease, acid and alkaline phosphatases) tended to be greater at tasseling than other sampling dates, with highest enzyme activities in the NPK + CPM treatments. These findings suggest that a long-term application of CPM combined with NPK is an efficient strategy to maintain or increase soil quality in Mollisols for sustainable agriculture.


2014 ◽  
Vol 83 ◽  
pp. 88-99 ◽  
Author(s):  
Cristian Wulff-Zottele ◽  
Holger Hesse ◽  
Joachim Fisahn ◽  
Mariusz Bromke ◽  
Hernán Vera-Villalobos ◽  
...  

2016 ◽  
Vol 46 (12) ◽  
pp. 2235-2240 ◽  
Author(s):  
XianJun Yuan ◽  
ZhiHao Dong ◽  
Seare Tajebe Desta ◽  
AiYou Wen ◽  
Xiaoxuan Zhu ◽  
...  

ABSTRACT: Ensilage is a simple and low-cost strategy to enable long term preservation and environmentally friendly utilization of agricultural by-products, such as straws and distiller's grains (DG) for ruminants. Effect of mixing different proportions of DG and rice straw (i.e. 0, 10, 20 or 30% of DG) with or without 5% molasses addition on fermentation and chemical variables of silages was evaluated. The study was conducted as a randomized blocks design in a 4 × 2 factorial arrangement, with three replications, using laboratory silos of 1L capacity (n=24). Despite a significant interaction (P<0.01) between DG and molasses addition was observed for most variables, in general the increased addition of DG linearly decreased the pH value, acetic acid (AA), butyric acid (BA) and ammonia N concentration (P<0.01), and increased the lactic acid (LA) concentration (P<0.01). Exception was the propionic acid concentration which linearly decreased without molasses addition and linearly increased with molasses addition at increased proportion of DG (P<0.01). In both silages with or without molasses the addition of DG increased the dry matter, water soluble carbohydrates and crude protein (P<0.01), and decreased the NDF content (P<0.01). Based on the perspective of maximum utilization of rice straw, the mixture of 10% of DG associated to 5% molasses at ensilage process is recommended.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 256-260 ◽  
Author(s):  
Jun Nie ◽  
Li C. Yin ◽  
Yu L. Liao ◽  
Sheng X. Zheng ◽  
Jian Xie

To assess the influence of long-term fertilization on weed communities of early and late rice crops, the weed species composition was investigated in experimental plots initiated in 1981 at the Key Field Experimental Monitoring Station of the Reddish Paddy Soil Eco-Environment in Wangcheng, China. The treatments were (1) a control (CK), no fertilizer; (2) N–P, no K; (3) N–K, no P; (4) P–K, no N; (5) N–P–K; (6) N–P–K + Ca, N, P, and K plus lime; (7) N–P + S, N and P plus additional rice straw return; (8) N–P–K + S, N, P, and K plus additional rice straw; (9) N–K + M, N and K plus swine manure. The results indicated that weed flora composition and density were influenced by the different fertilization treatments. Multivariate analyses indicated that changes in the weed community composition were primarily due to soil-available N, followed by light intensity on the field surface, and soil-available P. More weed species and total weed density were observed in the control and P–K plots than in plots in which N, P, and K were applied together. Omission of N application had a greater effect on the weed community than the omission of P or K applications. Nutrients derived from synthetic fertilizers and organic manure or the additional application of lime had no obvious effect on the weed community of late rice crops.


Sign in / Sign up

Export Citation Format

Share Document