Influence of Applied Cattle Manure on Winter Wheat (Triticum aestivum L.) Grain Yield, Soil pH and Soil Organic Carbon

2019 ◽  
Vol 50 (16) ◽  
pp. 2056-2064 ◽  
Author(s):  
Lawrence Aula ◽  
Peter Omara ◽  
Jagmandeep S. Dhillon ◽  
Alimamy Fornah ◽  
William R. Raun
2018 ◽  
Vol 49 (7) ◽  
pp. 803-813 ◽  
Author(s):  
Jagmandeep Dhillon ◽  
Mariana Ramos Del Corso ◽  
Bruno Figueiredo ◽  
Eva Nambi ◽  
William Raun

2015 ◽  
Vol 95 (5) ◽  
pp. 1033-1035
Author(s):  
Lily Tamburic-Ilincic ◽  
Arend Smid

Tamburic-Ilincic, L. and Smid, A. 2015. UGRC Ring, soft red winter wheat. Can. J. Plant Sci. 95: 1033–1035. UGRC Ring is a soft red winter wheat (Triticum aestivum L.) cultivar registered for Ontario, Canada. It has high grain yield, with good pastry quality (high flour yield, high falling number) and is moderately resistant to powdery mildew. UGRC Ring has good winter hardiness and is well adapted for the winter wheat growing areas of Ontario.


1984 ◽  
Vol 64 (1) ◽  
pp. 113-118 ◽  
Author(s):  
I. AGUILAR-M. ◽  
L. A. HUNT

Several experiments were conducted with winter wheat (Triticum aestivum L. em. Thell.) during 1978 and 1979 to characterize genotypic variation in some physiological and morphological traits, and to evaluate the magnitude of the relationships between grain yield and the various traits studied. Straw weights of cultivars grown in Eastern Canada were similar to, and harvest indices generally lower than, those reported for high yielding varieties from other countries. Highest grain weights were also lower than the upper values recorded for some cultivars in the U.K. and Mexico, and were little affected by spikelet removal in most cases. All experiments were consistent in showing highly significant correlations between grain yield and grains per square metre, straw weight, harvest index, spikes per square metre, and flag leaf area index, and significant correlations between grain yield and grain weight. Diffusive resistance of the adaxial surface of the flag leaves differed between genotypes, but correlations between diffusive resistance and yield were low and nonsignificant in all cases, with the exception of the preanthesis period in one experiment.Key words: Wheat (winter), Triticum aestivum L. em. Thell., yield, physiological-morphological traits.


1997 ◽  
Vol 77 (4) ◽  
pp. 669-671 ◽  
Author(s):  
D. B. Fowler

CDC Clair is a high-yielding, strong-strawed, semidwarf winter wheat (Triticum aestivum L.) with good winterhardiness. When grown in western Canada, it has the high grain yield and agronomic performance of CDC Kestrel, but improved grain quality. The grain protein concentration of CDC Clair has been higher than that of CDC Kestrel and similar to Norstar. CDC Clair is eligible for grades of the Canada Western Red Winter Wheat class. Key words: Triticum aestivum L., cultivar description, wheat (winter)


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Valentina Spanic ◽  
Josipa Cosic ◽  
Zvonimir Zdunic ◽  
Georg Drezner

For food security, it is essential to identify stable, high-yielding wheat varieties with lower disease severity. This is particularly important due to climate change, which results in pressure due to the increasing occurrence of Fusarium head blight (FHB). The objective of this study was to evaluate the stability of winter wheat (Triticum aestivum L.) grain yield under different environmental conditions. Twenty-five winter wheat varieties were evaluated under two treatments (naturally-disease infected (T1) and FHB artificial stress (T2)) during two growing seasons (2018–2019 to 2019–2020) in Osijek and in 2019–2020 in Tovarnik. The interaction between varieties and different environments for grain yield was described using the additive main-effects and multiplicative interaction (AMMI) effects model. The Kraljica and Fifi varieties were located near the origin of the biplot, thus indicating non-sensitivity to different environmental conditions. Principal component analysis (PCA) was used to understand the trait and environmental relationships. PC1 alone contributed 42.5% of the total variation, which was mainly due to grain yield, 1000 kernel weight and test weight in that respective order. PC2 contributed 21.1% of the total variation mainly through the total sedimentation value, test weight, wet gluten and protein content ratio (VG/P) and wet gluten content, in descending order.


Sign in / Sign up

Export Citation Format

Share Document