The Effects of Soil Solution Electrical Conductivity and Sodium Adsorption Ratio on Soil Liquid Limit and Soil Strength

Author(s):  
Hans Klopp ◽  
Will Bleam
2008 ◽  
Vol 88 (3) ◽  
pp. 429-441 ◽  
Author(s):  
S L Patterson ◽  
D S Chanasyk ◽  
M A Naeth ◽  
E. Mapfumo

Maximizing productive use and minimizing the environmental impacts of effluents require research on application rates. This study evaluated the effect of effluents from a Kraft pulp mill [a final effluent (KPME) and a waste activated sludge (WAS)], a municipality (ME) and tap water (TPW) applied at rates of 1.5, 3 and 6 mm d-1 on reed canarygrass (Phalaris arundinacea L. cv. Vantage) and hybrid poplar (Populus deltoides × P. petrowskyana var. Walker). The two pulp mill effluents significantly increased soluble soil SO4, Na and Cl. Soil solution electrical conductivity (EC) and sodium adsorption ratio (SAR) increased with pulp mill effluents compared with ME and TPW. Soil solution SAR increased from less than 1 to a range of 2.7 to 4.0 for the municipal effluent and 8.4 to 14.0 for the two pulp mill effluents. Soil solution EC increased from 1.1 to 2.3 dS m-1 to a range of 1.8 to 3.4 dS m-1 for municipal effluent and 5.1 to 6.1 dS m-1 as a result of pulp mill effluent applications. Under reed canarygrass, soils had lower concentrations of cations and anions than those under hybrid poplar, suggesting crop uptake and leaching. Thus, salt loadings of soils must be considered when determining application rates of effluents for irrigation. Key words: Electrical conductivity, hybrid poplar, effluent irrigation, sodium adsorption ratio


2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
ANSHUMAN SINGH ◽  
ASHWANI KUMAR ◽  
R.K. YADAV ◽  
ASHIM DUTTA ◽  
D.K. SHARMA

Guav a cv . Allahabad Safeda w as grown in saline soils and irrigated with the best av ailable w ater -1 -1 + -1 (EC 2.8 dS m ). Based on chemical composition (pH- 7.1, EC - 2.8 dS m , Na - 20.04 meq l and IW IW sodium adsorption ratio- 4.86), irrigation w ater w as categorized as marginally saline. The soil pH 2 -1 w as mostly below 8.5 but mean electrical conductivity (EC ) v alues ranged from 0.5-2 dS m 2 indicating moderate to high salinity in the experimental soil. After one-y ear of experimentation, fiv e plants randomly selected from each treatment and the data w ere recorded. Plant height -1 -1 significantly increased (LSD 5%) with increase in salinity from 0.5 dS m to 1.4 dS m . A similar -1 trend w as noted with respect to stem girth. The av erage plant height at 0.5, 0.9 and 1.4 dS m salinity lev els w as 98.3 cm, 108.3 cm and 123 cm, respectiv ely whereas the corresponding stem girth v alues -1 w ere 2.24 cm, 2.28 cm and 2.46 cm. At 2 dS m salinity ,how ev er , both av erage plant height (94.6 cm) and stem girth (2.24 cm) significantly decreased and w ere found to be comparable to control (0.5 dS -1 + -1 m ) v alues. Plants show ed negligible Na accumulation in leav es up to 1.4 dS m salinity , but -1 + exposure to elev ated salinity (2 dS m ) significantly increased leaf Na (0.16% DW). These data -1 indicated a salinity tolerance (EC )threshold of about 1.5 dS m inguav a cultiv ar Allahabad Safeda.


2014 ◽  
Vol 34 (6) ◽  
pp. 1104-1113 ◽  
Author(s):  
Eugênio F. Coelho ◽  
Torquato M. de Andrade Neto ◽  
Damiana L. Barros

The Fertigation is the combined application of water and nutrients to a crop. It can be adapted to all types of agricultural crops. The objective of this study was to evaluate the effect of urea concentration in irrigation water on electrical conductivity of the soil solution and saturation extract along the first cycle of banana cv. Terra Maranhão. The experiment followed a completely randomized design with six treatments and ten replications. Treatments regarded for using three urea concentrations (1.0; 2.5 and 4.0 g L-1) in irrigation water applied by two micro irrigation systems (microsprinkler and drip). Results showed that there was a linear elevation of electrical conductivity of saturation extract and soil solution with the increase on concentration of urea in the injection solution. Urea should be used under concentrations up to 2.5 g L-1 in irrigation water without causing increase on electric conductivity of soil solution and saturation extract, considering 1.1 dS m-1 as the tolerated value for the crop. Nitrate in the soil solution increased significantly with the increase of urea concentration in the injection solution. The maximum concentration of nitrate in the soil occurred for 4,0 g L-1 concentration of the injection solution.


Irriga ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Dirceu Maximino Fernandes ◽  
Marco André Grohskopf ◽  
Edilson Ramos Gomes ◽  
Natália Rodrigues Ferreira ◽  
Leonardo Teodoro Bull

FÓSFORO NA SOLUÇÃO DO SOLO EM RESPOSTA À APLICAÇÃO DE FERTILIZANTES FLUIDOS MINERAL E ORGANOMINERAL  DIRCEU MAXIMINO FERNANDES1; MARCO ANDRÉ GROHSKOPF2; EDILSON RAMOS GOMES3; NATÁLIA RODRIGUES FERREIRA2 E LEONARDO TEODORO BÜLL1 1Professor do Programa de Pós-Graduação em Agronomia, – Universidade Estadual Paulista “Júlio Mesquita Filho”, Faculdade de Ciências Agronômicas (UNESP/FCA) - Rua José Barbosa de Barros, no 1780, CEP: 18160-307 - Botucatu, SP, bolsista de produtividade em pesquisa do CNPq. E-mail: [email protected]; [email protected] do Programa de Pós-Graduação em Agronomia (Agricultura) – UNESP/FCA, bolsista CAPES. E-mail: [email protected]; [email protected] do Programa de Pós-Graduação em Agronomia (Irrigação e Drenagem) – UNESP/FCA, bolsista CNPq. E-mail: [email protected].  1 RESUMO Pouco se conhece sobre a dinâmica da solução do solo em resposta a aplicação de diferentes fertilizantes no solo, principalmente, em relação à adubação fosfatada. Nesse sentido, avaliou-se o teor de fósforo, pH e condutividade elétrica na solução do solo e, a produção de biomassa de parte aérea de plantas em resposta a aplicação de fertilizantes fluidos mineral e organomineral a base de dejeto suíno e, mineral sólido. Os tratamentos foram: testemunha geral caracterizada pela ausência de nutrientes, testemunha de fósforo (P) caracterizada pela ausência apenas de P, fertilizantes fluido mineral (MF-P) e organomineral (OF-P) e, sólido (MS-P) aplicados em Latossolo Vermelho distroférrico (LV) e Neossolo Quartzarênico Órtico típico (NQ). O experimento foi conduzido em vasos em casa de vegetação em delineamento experimental de blocos casualizados com quatro repetições. A solução do solo foi captada através de extratores de solução instalados nos vasos, realizando-se dez coletas no período de 137 dias após a aplicação dos fertilizantes, abrangendo dois cultivos consecutivos de aveia preta (cultivo I e cultivo II). Em ambos os solos o rendimento de matéria seca no cultivo I foi maior no OF-P e no cultivo II semelhante no MS-P, MF-P e OF-P, sendo os maiores rendimentos demonstrados no LV em relação ao NQ. Os teores de P na solução do solo variaram ao longo do tempo apenas no OF-P no LV, enquanto que no NQ houve variação em todos os tratamentos, sendo em ambos os solos os maiores teores a partir do cultivo II.  Para os valores de pH e condutividade elétrica (CE) também houve variação ao longo do tempo em ambos os solos, sendo que no pH os valores aumentaram e na CE os valores diminuíram no cultivo II em relação ao cultivo I em todos os tratamentos. Palavras-chave: adubo líquido e sólido, resíduo, esterco.   FERNADES, D. M.; GROHSKOPF, M. A.; GOMES, E. R.; FERREIRA, N. R.; BÜLL, L.T.PHOSPHORUS IN SOIL SOLUTION IN RESPONSE TO THE APPLICATION OF MINERAL AND ORGANOMINERAL FLUID FERTILIZERS  2 ABSTRACT Little is known about the dynamics of soil solution in  response to  the application of different soil fertilizers, mainly in relation to phosphorus fertilization.  Using this approach, the study evaluated phosphorus content, pH and electrical conductivity in soil solution as well as shoot biomass production in response to mineral and organomineral fluid fertilizers containing swine manure and solid mineral.  Treatments were as follows: a control treatment consisting of absence of nutrients, phosphorus (P) control characterized by absence   only of  P, mineral (MF-P) and organomineral (OF-P) fluid fertilizers , and solid mineral fertilizer (SM-P) applied to Oxisol   (LVd) and Typic Quartzipsamments  (TQ) soils. The experiment was carried out   using pots in a greenhouse with a randomized block  experimental design  and  four replicates. Soil solution was collected by solution extractors installed in pots. Ten collections were performed over 137 days after fertilizer application, which included two crops in a row of black oat (cultivation I and cultivation II). In both soils, yield of dry matter in cultivation I was higher in OF-P, and  it was similar in  (SM-P), (MF-P) and (OF-P) in cultivation II. Higher yield was obtained in LVd in relation to TQ.  Phosphorus content in soil solution ranged over time just in OF-P in LVd, whereas  variation was observed in all treatments in TQ. In both soils, higher content was observed as of cultivation II.   Also, variation over time was observed for pH and electrical conductivity (EC) values in both soils. Values of pH increased and values of EC decreased in cultivation II as compared with those in cultivation I in all treatments. Keywords: liquid and solid fertilizer, residue, manure.


Soil Research ◽  
1997 ◽  
Vol 35 (3) ◽  
pp. 515 ◽  
Author(s):  
I. Vogeler ◽  
B. E. Clothier ◽  
S. R. Green

In order to examine whether the electrolyte concentration in the soil solution can be estimated by time domain reflectometry (TDR) measured bulk soil electrical conductivity, column leaching experiments were performed using undisturbed soil columns during unsaturated steady-state water flow. The leaching experiments were carried out on 2 soils with contrasting pedological structure. One was the strongly structured Ramiha silt loam, and the other the weakly structured Manawatu fine sandy loam. Transport parameters obtained from the effluent data were used to predict the transient pattern in the resident electrolyte concentration measured by TDR. The electrolyte concentration was inferred from the TDR-measured bulk soil electrical conductivity using 2 different calibration approaches: one resulting from continuous solute application, and the other by direct calibration. Prior to these, calibration on repacked soil columns related TDR measurements to both the volumetric water content and the electrolyte concentration that is resident in the soil solution. The former calibration technique could be used successfully to describe solute transport in both soils, but without predicting the absolute levels of solute. The direct calibration method only provided good estimates of the resident concentration, or electrolyte concentration, in the strongly structured top layer of the Ramiha soil. This soil possessed no immobile water. For the less-structured layer of the Ramiha, and the weakly structured Manawatu soil, only crude approximations of the solute concentration in the soil were found, with measurement errors of up to 50%. The small-scale pattern of electrolyte movement of these weakly structured soils appears to be quite complex.


2017 ◽  
Vol 12 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
K. Kim ◽  
J. Sim ◽  
T.-H. Kim

This study presents soil-moisture calibrations using low-frequency (15–40 MHz) time domain reflectometry (TDR) probe, referred to as water content reflectometer (WCR), for measuring the volumetric water content of landfill cover soils, developing calibrations for 28 different soils, and evaluating how WCR calibrations are affected by soil properties and electrical conductivity. A 150-mm-diameter PVC cell was used for the initial WCR calibration. Linear and polynomial calibrations were developed for each soil. Although the correlation coefficients (R<sup>2</sup>) for the polynomial calibration are slightly higher, the linear calibrations are accurate and pragmatic to use. The effects of soil electrical conductivity and index properties were investigated using the slopes of linear WCR calibrations. Soils with higher electrical conductivity had lower calibration slopes due to greater attenuation of the signal during transmission in the soil. Soils with higher electrical conductivity tended to have higher clay content, organic matter, liquid limit, and plasticity index. The effects of temperature and dry unit weight on WCR calibrations were assessed in clayey and silty soils. The sensor period was found to increase with the temperature and density increase, with greater sensitivity in fine-textured plastic soils. For typical variations in temperature, errors in volumetric water content on the order of 0.04 can be expected for wet soils and 0.01 for drier soils if temperature corrections are not applied. Errors on the order of 0.03 (clays) and 0.01 (silts) can be expected for typical variations in dry unit weight (± 2 kN/m<sup>3</sup>).


Sign in / Sign up

Export Citation Format

Share Document