A Dual-mode Control Scheme for Systems with High Accuracy and Large Range of Step-input Variations

1967 ◽  
Vol 6 (4) ◽  
pp. 351-363 ◽  
Author(s):  
G. K. DUBEY ◽  
G. C. DE
2019 ◽  
Vol 9 (9) ◽  
pp. 1860
Author(s):  
Ching-Chun Chuang ◽  
Chih-Chiang Hua ◽  
Chong-Yu Huang ◽  
Li-Kai Jhou

The proposed system can overcome the disadvantage of a high peak current in quasi-resonant fly-back (QRF) converters when operated under heavy load conditions. The operating mode and control scheme of a QRF converter with dual-mode control were established and analyzed. The dual-mode control scheme not only enabled a valley-switching detection technique that satisfied the zero-voltage switching condition but also provided a constant frequency mechanism to reduce the conduction loss in QRF converters when operated in a continuous conduction mode and under heavy load conditions. The small-signal equivalent circuit model of QRF converter circuits was constructed using an average approximation method. The technological advancement of a QRF converter with a dual-mode controller was presented in this study. The circuit simulation result of the proposed QRF converter with a mix control scheme proved that the derived circuit component parameters meet the requirements of the converter.


2012 ◽  
Vol 516-517 ◽  
pp. 1906-1909
Author(s):  
Yu Kang Lo ◽  
Jing Yuan Lin ◽  
Chao Fu Wang

This paper presents a dual-mode control scheme for a boost rectifier at both extreme loads. The transition-mode (TM) technique is adopted to reduce the switching loss at light loads. On the other hand, the fixed-off-time (FOT) control with continuous conduction mode (CCM) operation decreases the conduction losses at heavy loads. The principles and design procedures of the proposed dual-mode controller are discussed and analyzed. Finally, a 300-W dual-mode boost rectifier with an output voltage of 380 V is implemented with satisfactory experimental results.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2144 ◽  
Author(s):  
Ming Li ◽  
Xing Zhang ◽  
Wei Zhao

Due to the increasing penetration of distributed generations (DGS) and non-negligible grid impedance, the instability problem of the multi-inverter system operating in current source mode (CSM) is becoming serious. In this paper, a closed-loop transfer function model of such a multi-inverter system is established, by which it is concluded that output current resonance will occur with the increase in the grid impedance. In order to address this problem, this paper presents a novel dual-mode control scheme of multiple inverters: one inverter operating in CSM will be alternated into voltage source mode (VSM) if the grid impedance is high. It is theoretically proved that the coupling between the inverters and the resonance in the output current can be suppressed effectively with the proposed scheme. Finally, the validity of the proposed theory is demonstrated by extensive simulations and experiments.


Author(s):  
J A Linnett ◽  
M C Smith

A fast, accurate, low-cost pneumatic control system in which the actuator can be programmed off-line to stop at any required position in its travel without the use of mechanical stops is described. A dual-mode control scheme switching two on/off valves is used. The system is able to position a 37 kg inertia load to within ± I mm at any point on a 300 mm stroke in less than a second.


Author(s):  
Shang Wang ◽  
Jinquan Wang ◽  
Zhenxiang Yi ◽  
Ming Qin ◽  
Qing-An Huang

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Author(s):  
Fatemeh Khani ◽  
Mohammad Haeri

Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately. Finally, the effectiveness of the proposed scheme is illustrated on a continuous stirred tank reactor (CSTR) process.


Sign in / Sign up

Export Citation Format

Share Document