Modelled effects of channel orientation and tree canopy shape on average shade in streams

Author(s):  
James Christopher Rutherford ◽  
Sandy Haidekker ◽  
Fleur E. Matheson ◽  
Andrew Hicks
EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Davie Mayeso Kadyampakeni ◽  
Kelly T. Morgan ◽  
Mongi Zekri ◽  
Rhuanito Ferrarezi ◽  
Arnold Schumann ◽  
...  

Water is a limiting factor in Florida citrus production during the majority of the year because of the low water holding capacity of sandy soils resulting from low clay and the non-uniform distribution of the rainfall. In Florida, the major portion of rainfall comes in June through September. However, rainfall is scarce during the dry period from February through May, which coincides with the critical stages of bloom, leaf expansion, fruit set, and fruit enlargement. Irrigation is practiced to provide water when rainfall is not sufficient or timely to meet water needs. Proper irrigation scheduling is the application of water to crops only when needed and only in the amounts needed; that is, determining when to irrigate and how much water to apply. With proper irrigation scheduling, yield will not be limited by water stress. With citrus greening (HLB), irrigation scheduling is becoming more important and critical and growers cannot afford water stress or water excess. Any degree of water stress or imbalance can produce a deleterious change in physiological activity of growth and production of citrus trees.  The number of fruit, fruit size, and tree canopy are reduced and premature fruit drop is increased with water stress.  Extension growth in shoots and roots and leaf expansion are all negatively impacted by water stress. Other benefits of proper irrigation scheduling include reduced loss of nutrients from leaching as a result of excess water applications and reduced pollution of groundwater or surface waters from the leaching of nutrients. Recent studies have shown that for HLB-affected trees, irrigation frequency should increase and irrigation amounts should decrease to minimize water stress from drought stress or water excess, while ensuring optimal water availability in the rootzone at all times.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498d-498
Author(s):  
Z.L. He ◽  
A.K. Alva ◽  
D.V. Calvert ◽  
D.J. Banks ◽  
Y.C. Li

A field experiment was conducted in a Riviera fine sand (Alfisol) with 25-year-old `White Marsh' grapefruit trees on Sour orange rootstock to monitor the downward transport of nutrients from fertilization practices. Fertilizer was applied as either dry granular broadcast (three applications/year) or fertigation (15 applications/year) at N rates of 56, 112, 168, and 336 kg/ha per year using a N:P:K blend (1.0:0.17:1.0). Soil solution was sampled bi-weekly from suction lysimeters, installed under the tree canopy, about 120 cm from the tree trunk, at two depths representing above (120 cm) and below (180 cm) the hard pan. The concentrations of K, Ca, and Mg were greater at the 180- than at 120-cm depth, whereas, the converse was true with respect to the concentration of P in soil solution. Over a 2-year period, the mean concentrations of P and K varied from 0.031-0.976 and 150-250 mg·L–1, respectively. Increased rate of fertilization also appeared to increase the concentrations of Ca and Mg in the soil solution. This could be due to effects of slight acidification of the soil with increased rates of ammonium form of N. A parallel study on pH measurements has shown evidence of soil acidification, under the tree canopy, with increased rates of ammonium fertilization. In a bedded grove, the soil solution above the hard pan is likely to seep into the water furrow, which is discharged into the drainage water.


2013 ◽  
Vol 12 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Sarah K. Mincey ◽  
Mikaela Schmitt-Harsh ◽  
Richard Thurau

Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Kathryn E. Schertz ◽  
James Saxon ◽  
Carlos Cardenas-Iniguez ◽  
Luís M. A. Bettencourt ◽  
Yi Ding ◽  
...  

AbstractCrime is a costly societal issue. While many factors influence urban crime, one less-studied but potentially important factor is neighborhood greenspace. Research has shown that greenspace is often negatively associated with crime. Measuring residents’ use of greenspace, as opposed to mere physical presence, is critical to understanding this association. Here, we used cell phone mobility data to quantify local street activity and park visits in Chicago and New York City. We found that both factors were negatively associated with crime, while controlling for socio-demographic factors. Each factor explained unique variance, suggesting multiple pathways for the influence of street activity and greenspace on crime. Physical tree canopy had a smaller association with crime, and was only a significant predictor in Chicago. These findings were further supported by exploratory directed acyclic graph modeling, which found separate direct paths for both park visits and street activity to crime.


2021 ◽  
Vol 13 (5) ◽  
pp. 2640
Author(s):  
Muhammad Zubair ◽  
Akash Jamil ◽  
Syed Bilal Hussain ◽  
Ahsan Ul Haq ◽  
Ahmad Hussain ◽  
...  

The moist temperate forests in Northern Pakistan are home to a variety of flora and fauna that are pivotal in sustaining the livelihoods of the local communities. In these forests, distribution and richness of vegetation, especially that of medicinal plants, is rarely reported. In this study, we carried out a vegetation survey in District Balakot, located in Northeastern Pakistan, to characterize the diversity of medicinal plants under different canopies of coniferous forest. The experimental site was divided into three major categories (viz., closed canopy, open spaces, and partial tree cover). A sampling plot of 100 m2 was established on each site to measure species diversity, dominance, and evenness. To observe richness and abundance, the rarefaction and rank abundance curves were plotted. Results revealed that a total of 45 species representing 34 families were available in the study site. Medicinal plants were the most abundant (45%) followed by edible plants (26%). Tree canopy cover affected the overall growth of medicinal plants on the basis of abundance and richness. The site with partial canopy exhibited the highest diversity, dominance, and abundance compared to open spaces and closed canopy. These findings are instrumental in identifying the wealth of the medicinal floral diversity in the northeastern temperate forest of Balakot and the opportunity to sustain the livelihoods of local communities with the help of public/private partnership.


1992 ◽  
Vol 24 (2) ◽  
pp. 165-180
Author(s):  
M. Hyvärinen ◽  
P. Halonen ◽  
M. Kauppi

Abstract The epiphytic lichen vegetation on the trunks of Pinus sylvestris and Picea abies was studied and analysed by canonical correspondence analysis in relation to a number of environmental variables. The distribution and abundance of epiphytic lichen species proved to be dependent on the age of the stand, showing divergent responses in relation to phorophyte species and environmental variables such as acidity of the bark and vertical location on the trunk. The importance of stand age in the pattern of community variation is concluded to be an outcome of interaction between changes in the structure of the tree canopy, microclimate and properties of the bark. The responses of single lichen species to changes in the environment seem to vary considerably, indicating differences in competitive ability and ecological strategy between the species.


Sign in / Sign up

Export Citation Format

Share Document