An investigation of the effect of high-energy milling time of Ti6Al4V biomaterial on the wear performance in the simulated body fluid environment

2017 ◽  
Vol 60 (5) ◽  
pp. 384-392 ◽  
Author(s):  
I. Simsek ◽  
D. Ozyurek
2015 ◽  
Vol 91 ◽  
pp. 151-159 ◽  
Author(s):  
Mamoun Fellah ◽  
Mohammed Abdul Samad ◽  
Mohamed Labaiz ◽  
Omar Assala ◽  
Alain Iost

2011 ◽  
Vol 194-196 ◽  
pp. 665-668
Author(s):  
Chun Huan Chen ◽  
Rui Ming Ren

In order to synthesize WC-Co nanopowders through an integrated mechanical and thermal activation process, WO3-Co2O3-C nanopowders need to be obtained first. It is critical how to obtain the WO3-Co2O3-C nanopowders efficiently. The effect of processing parameters on the grain size during high-energy-milling of WO3-Co2O3-C mixed powders was studied via X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the grain size of reactants can be effectively decreased with increasing the milling time, rotation speed, and charge ratio. After a certain time milling, both WO3 and C powders achieve nano-level in grain size and mixed homogeneously. The appropriate milling parameters for fabricating nanosized WO3+C+Co2O3 powders are suggested to be 4 to 8 hours of milling time, 400 RPM of rotation speed, and 40:1 to 60:1 of charge ratio.


2016 ◽  
Vol 130 (4) ◽  
pp. 1033-1036 ◽  
Author(s):  
I. Matuła ◽  
G. Dercz ◽  
M. Zubko ◽  
K. Prusik ◽  
L. Pająk

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1305 ◽  
Author(s):  
Dora Janovszky

Pure Al particles reinforced with amorphous-nanocrystalline Cu36Zr48Ag8Al8 particles composite powders were prepared by high-energy milling without and with ethanol. The mechanical milling procedures were compared so that in the case of dry milling the particle size increased owing to cold welding, but the crystallite size decreased below 113 nm. The amorphous phase disappeared and was not developed until 30 h of milling time. Using ethanol as a process control agent, the particle size did not increase, while the amorphous fraction increased to 15 wt.%. Ethanol decomposed to carbon dioxide, water, and ethane. Its addition was necessary to increase the amount of the amorphous structure.


2017 ◽  
Vol 20 (3) ◽  
pp. 747-754 ◽  
Author(s):  
Alexandre Nogueira Ottoboni Dias ◽  
Aline da Silva ◽  
Carlos Alberto Rodrigues ◽  
Mírian de Lourdes Noronha Motta Melo ◽  
Geovani Rodrigues ◽  
...  

2012 ◽  
Vol 727-728 ◽  
pp. 499-504 ◽  
Author(s):  
C. Caldart ◽  
J. Souza ◽  
M.Z. Pellegrin ◽  
Glaucea Warmeling Duarte ◽  
M.R. Rocha ◽  
...  

Some materials have been applied in many surrounding conditions as sensors, electronic devices and other applications. Inexpensive and reliable temperature and flow measurement are important in many applications including, for example, environmental monitoring and control, indoor air conditioning, weather forecasting, automotive and aerospace systems. Special ceramics are an example of such materials. Neodymium-Barium-Copper is a special ceramic that has high electrical conductivity and airflow sensor characteristics. This property is influenced by high energy milling of the powder, when it is not sintered. To evaluate the influence of this type of milling it was carried out an analysis of particle size as a function of milling time. SEM images and granulometric analysis showed significant reduction of particle size with the increase of milling time. For longer times of milling the mixture of precursor powders is favored, resulting in better homogeneity of the ceramic. This is reflected in the properties of airflow sensor.


2014 ◽  
Vol 793 ◽  
pp. 37-44
Author(s):  
C.A. León-Patiño ◽  
D. Ramírez-Vinasco ◽  
E.A. Aguilar-Reyes

This work involves the preparation of Cu-Al-SiC composite powders by a high-energy milling process and the study of their densification behavior by cold compaction. The goal of the milling process is to get embedded the ceramic particles in the metal matrix to enhance the distribution of the metal and ceramic phases in the compacts, an important condition to derive in isotropic properties of consolidated materials. For comparison purposes, compressibility tests of a Cu-5Al matrix prepared by high-energy milling were performed; while additions of 1, 5 and 10 vol.% SiC were added to the matrix. It was found that the high-energy milling process leads to Cu-Al-SiC composite powders with a homogeneous distribution of the reinforcement in the matrix. Compressibility essays showed that densification of the powders decreased with SiC content; a densification of 73.7% was obtained for composites with 10% SiC compared to 76.0% for samples with 1% SiC at the maximum load applied. Milling time reduced the plastic deformation capacity of the matrix leading to fracture of the cold welded aggregates; the fracture process was accelerated by the addition of the hard reinforcement particles. Thus, morphology of the powders changed from laminar, to fine fragments and coarse aggregates, affecting the compaction behavior.


Sign in / Sign up

Export Citation Format

Share Document