Soil organic carbon was more strongly linked with soil phosphate fixing capacity than with clay content across 20,000 agricultural soils in Japan: a potential role of reactive aluminum revealed by soil database approach

Author(s):  
Kayo Matsui ◽  
Yusuke Takata ◽  
Shoji Matsuura ◽  
Rota Wagai
2021 ◽  
Author(s):  
Steffen A. Schweizer ◽  
Carsten W. Mueller ◽  
Carmen Höschen ◽  
Pavel Ivanov ◽  
Ingrid Kögel-Knabner

AbstractCorrelations between organic carbon (OC) and fine mineral particles corroborate the important role of the abundance of soil minerals with reactive surfaces to bind and increase the persistence of organic matter (OM). The storage of OM broadly consists of particulate and mineral-associated forms. Correlative studies on the impact of fine mineral soil particles on OM storage mostly combined data from differing sites potentially confounded by other environmental factors. Here, we analyzed OM storage in a soil clay content gradient of 5–37% with similar farm management and mineral composition. Throughout the clay gradient, soils contained 14 mg OC g−1 on average in the bulk soil without showing any systematic increase. Density fractionation revealed that a greater proportion of OC was stored as occluded particulate OM in the high clay soils (18–37% clay). In low clay soils (5–18% clay), the fine mineral-associated fractions had up to two times higher OC contents than high clay soils. Specific surface area measurements revealed that more mineral-associated OM was related to higher OC loading. This suggests that there is a potentially thicker accrual of more OM at the same mineral surface area within fine fractions of the low clay soils. With increasing clay content, OM storage forms contained more particulate OC and mineral-associated OC with a lower surface loading. This implies that fine mineral-associated OC storage in the studied agricultural soils was driven by thicker accrual of OM and decoupled from clay content limitations.


CATENA ◽  
2013 ◽  
Vol 109 ◽  
pp. 186-194 ◽  
Author(s):  
Chao Wang ◽  
Fuchun Li ◽  
Huanzhi Shi ◽  
Zhangdong Jin ◽  
Xuhui Sun ◽  
...  

2015 ◽  
Vol 5 ◽  
Author(s):  
Elías Luis Calvo ◽  
Francisco Casás Sabarís ◽  
Juan Manuel Galiñanes Costa ◽  
Natividad Matilla Mosquera ◽  
Felipe Macías Vázquez ◽  
...  

The soil organic carbon content was analyzed in more than 7 000 soil samples under different land uses, climates and lithologies from northern Spain (Galicia, Asturias, Cantábria y País Vasco). GIS maps (1:50 000) were made of the % SOC and SOC stocks. The % SOC varies according to land use (higher in forest and scrub soils and lower in agricultural soils) and climate, and there is a highly significant correlation between SOC content and mean annual precipitation. There are significant differences between the soils of Galicia/Western Asturias (GA<sub>w</sub>) and those of the rest of the study area (Central and Eastern Asturias, Cantabria and País Vasco) (A<sub>ce</sub>CV), although these are neighbouring regions. In forest and/or scrub soils with a <em>udic</em> soil moisture regime, in GA<sub>w</sub>, the SOC is usually &gt; 7% and the average stocks 260 t ha<sup> -1</sup> (0-30 cm), and &gt;340 t ha<sup>-1</sup> (0-50 cm) in soils with thick organic matter rich horizons (&gt; 40 cm); these values greatly exceed the average contents observed in forest soils from temperate zones. Under similar conditions of vegetation and climate in soils of A<sub>ce</sub>CV the SOC average is 3% and the mean stocks 90-100 t ha<sup>-1</sup> (0-30 cm). The <em>andic</em> character of acid forest soils in GA<sub>w</sub> and the formation of C-Al,Fe complexes are pointed out as the SOC stabilization mechanism, in contrast to the neutral and calcareous soils that predominate in A<sub>ce</sub>CV, where the main species of OC are easily biodegradable.


2014 ◽  
Vol 4 ◽  
Author(s):  
Jose Navarro Pedreño ◽  
Ignacio Gómez Lucas ◽  
Jose Martín Soriano Disla

The mineralisation of organic matter (OM) when sewage sludge was used as amendment in 70 contrasting agricultural soils from Spain was analysed. Soils received a single dose of sewage sludge (equivalent to 50t dry weight ha<sup>-1</sup>) and the O<sub>2</sub> consumption was continuously monitored for 30 days using a multiple sensor respirometer in a laboratory experiment. The cumulative O<sub>2</sub> consumption and rates after 8 and 30 days of incubation (O<sub>2 cum</sub> 8d, 30d and O<sub>2 rate</sub> 8d, 30d), the respiratory quotient (RQ), the maximum O<sub>2</sub> rates over the incubation period (O<sub>2 max</sub>) and time from the beginning of the incubation when O<sub>2 max</sub> occurred (T<sub>max</sub>), were determined in both amended and non-amended soils. Sewage sludge application resulted in increased values for O<sub>2 max</sub>, O<sub>2 rate</sub> 8d, and O<sub>2 cum</sub> 30d. Differences were minor for T<sub>max</sub>, RQ 8d and O<sub>2 rate</sub> 30d. A considerable amount of the initial OM applied was mineralised during the first 8 days. Organic matter decomposition (as expressed by O<sub>2 cum</sub> 30d) was favoured in soils with high values of pH, carbonates, soil organic carbon and low values of amorphous Mn. Soils with these characteristics may potentially lose soil C after sewage sludge application.


2016 ◽  
Author(s):  
Christopher Poeplau ◽  
Cora Vos ◽  
Axel Don

Abstract. Estimation of soil organic carbon (SOC) stocks requires estimates of the carbon content, bulk density, stone content and depth of a respective soil layer. However, different application of these parameters could introduce a considerable bias. Here, we explain why three out of four frequently applied methods overestimate SOC stocks. In stone rich soils (> 30 Vol. %), SOC stocks could be overestimated by more than 100 %, as revealed by using German Agricultural Soil Inventory data. Due to relatively low stone content, the mean systematic overestimation for German agricultural soils was 2.1–10.1 % for three different commonly used equations. The equation ensemble as re-formulated here might help to unify SOC stock determination and avoid overestimation in future studies.


Sign in / Sign up

Export Citation Format

Share Document