Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms

2020 ◽  
Vol 42 (4) ◽  
pp. 1311-1329
Author(s):  
Rei Sonobe ◽  
Hiroto Yamashita ◽  
Harumi Mihara ◽  
Akio Morita ◽  
Takashi Ikka
Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 368 ◽  
Author(s):  
Rei Sonobe ◽  
Yuhei Hirono ◽  
Ayako Oi

Tea trees are kept in shaded locations to increase their chlorophyll content, which influences green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions is important for managing tea trees and producing high-quality green tea. Hyperspectral remote sensing is one of the most frequently used methods for estimating chlorophyll content. Numerous studies based on data collected under relatively low-stress conditions and many hyperspectral indices and radiative transfer models show that shade-grown tea performs poorly. The performance of four machine learning algorithms—random forest, support vector machine, deep belief nets, and kernel-based extreme learning machine (KELM)—in evaluating data collected from tea leaves cultivated under different shade treatments was tested. KELM performed best with a root-mean-square error of 8.94 ± 3.05 μg cm−2 and performance to deviation values from 1.70 to 8.04 for the test data. These results suggest that a combination of hyperspectral reflectance and KELM has the potential to trace changes in the chlorophyll content of shaded tea leaves.


2019 ◽  
Vol 11 (5) ◽  
pp. 481 ◽  
Author(s):  
Deepak Upreti ◽  
Wenjiang Huang ◽  
Weiping Kong ◽  
Simone Pascucci ◽  
Stefano Pignatti ◽  
...  

This study focuses on the comparison of hybrid methods of estimation of biophysical variables such as leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fraction of vegetation cover (FVC), and canopy chlorophyll content (CCC) from Sentinel-2 satellite data. Different machine learning algorithms were trained with simulated spectra generated by the physically-based radiative transfer model PROSAIL and subsequently applied to Sentinel-2 reflectance spectra. The algorithms were assessed against a standard operational approach, i.e., the European Space Agency (ESA) Sentinel Application Platform (SNAP) toolbox, based on neural networks. Since kernel-based algorithms have a heavy computational cost when trained with large datasets, an active learning (AL) strategy was explored to try to alleviate this issue. Validation was carried out using ground data from two study sites: one in Shunyi (China) and the other in Maccarese (Italy). In general, the performance of the algorithms was consistent for the two study sites, though a different level of accuracy was found between the two sites, possibly due to slightly different ground sampling protocols and the range and variability of the values of the biophysical variables in the two ground datasets. For LAI estimation, the best ground validation results were obtained for both sites using least squares linear regression (LSLR) and partial least squares regression, with the best performances values of R2 of 0.78, rott mean squared error (RMSE) of 0.68 m2 m−2 and a relative RMSE (RRMSE) of 19.48% obtained in the Maccarese site with LSLR. The best results for LCC were obtained using Random Forest Tree Bagger (RFTB) and Bagging Trees (BagT) with the best performances obtained in Maccarese using RFTB (R2 = 0.26, RMSE = 8.88 μg cm−2, RRMSE = 17.43%). Gaussian Process Regression (GPR) was the best algorithm for all variables only in the cross-validation phase, but not in the ground validation, where it ranked as the best only for FVC in Maccarese (R2 = 0.90, RMSE = 0.08, RRMSE = 9.86%). It was found that the AL strategy was more efficient than the random selection of samples for training the GPR algorithm.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroto Yamashita ◽  
Rei Sonobe ◽  
Yuhei Hirono ◽  
Akio Morita ◽  
Takashi Ikka

Abstract Nondestructive techniques for estimating nitrogen (N) status are essential tools for optimizing N fertilization input and reducing the environmental impact of agricultural N management, especially in green tea cultivation, which is notably problematic. Previously, hyperspectral indices for chlorophyll (Chl) estimation, namely a green peak and red edge in the visible region, have been identified and used for N estimation because leaf N content closely related to Chl content in green leaves. Herein, datasets of N and Chl contents, and visible and near-infrared hyperspectral reflectance, derived from green leaves under various N nutrient conditions and albino yellow leaves were obtained. A regression model was then constructed using several machine learning algorithms and preprocessing techniques. Machine learning algorithms achieved high-performance models for N and Chl content, ensuring an accuracy threshold of 1.4 or 2.0 based on the ratio of performance to deviation values. Data-based sensitivity analysis through integration of the green and yellow leaves datasets identified clear differences in reflectance to estimate N and Chl contents, especially at 1325–1575 nm, suggesting an N content-specific region. These findings will enable the nondestructive estimation of leaf N content in tea plants and contribute advanced indices for nondestructive tracking of N status in crops.


Author(s):  
Anurag Langan

Grading student answers is a tedious and time-consuming task. A study had found that almost on average around 25% of a teacher's time is spent in scoring the answer sheets of students. This time could be utilized in much better ways if computer technology could be used to score answers. This system will aim to grade student answers using the various Natural Language processing techniques and Machine Learning algorithms available today.


2020 ◽  
Vol 11 (08) ◽  
pp. 1217-1234
Author(s):  
Fangfang Jia ◽  
Shuang Han ◽  
Dong Chang ◽  
Haitao Yan ◽  
Yueqi Xu ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3902
Author(s):  
Na Ta ◽  
Qingrui Chang ◽  
Youming Zhang

Leaf chlorophyll content (LCC) is one of the most important factors affecting photosynthetic capacity and nitrogen status, both of which influence crop harvest. However, the development of rapid and nondestructive methods for leaf chlorophyll estimation is a topic of much interest. Hence, this study explored the use of the machine learning approach to enhance the estimation of leaf chlorophyll from spectral reflectance data. The objective of this study was to evaluate four different approaches for estimating the LCC of apple tree leaves at five growth stages (the 1st, 2nd, 3rd, 4th and 5th growth stages): (1) univariate linear regression (ULR); (2) multivariate linear regression (MLR); (3) support vector regression (SVR); and (4) random forest (RF) regression. Samples were collected from the leaves on the eastern, western, southern and northern sides of apple trees five times (1st, 2nd, 3rd, 4th and 5th growth stages) over three consecutive years (2016–2018), and experiments were conducted in 10–20-year-old apple tree orchards. Correlation analysis results showed that LCC and ST, LCC and vegetation indices (VIs), and LCC and three edge parameters (TEP) had high correlations with the first-order differential spectrum (FODS) (0.86), leaf chlorophyll index (LCI) (0.87), and (SDr − SDb)/ (SDr + SDb) (0.88) at the 3rd, 3rd, and 4th growth stages, respectively. The prediction models of different growth stages were relatively good. The MLR and SVR models in the LCC assessment of different growth stages only reached the highest R2 values of 0.79 and 0.82, and the lowest RMSEs were 2.27 and 2.02, respectively. However, the RF model evaluation was significantly better than above models. The R2 value was greater than 0.94 and RMSE was less than 1.37 at different growth stages. The prediction accuracy of the 1st growth stage (R2 = 0.96, RMSE = 0.95) was best with the RF model. This result could provide a theoretical basis for orchard management. In the future, more models based on machine learning techniques should be developed using the growth information and physiological parameters of orchards that provide technical support for intelligent orchard management.


Author(s):  
Dr. K. Suresh

The current way of checking answer scripts is hectic for the college. They need to manually check the answers and allocate the marks to the students. Our proposed system uses Machine Learning and Natural Language Processing techniques to beat this. Machine learning algorithms use computational methods to find out directly from data without hopping on predetermined rules. NLP algorithms identify specific entities within the text, explore for key elements during a document, run a contextual search for synonyms and detect misspelled words or similar entries, and more. Our algorithm performs similarity checking and also the number of words associated with the question exactly matched between two documents. It also checks whether the grammar is correctly used or not within the student's answer. Our proposed system performs text extraction and evaluation of marks by applying Machine Learning and Natural Language Processing techniques.


2020 ◽  
Vol 245 ◽  
pp. 07002
Author(s):  
Martin Adam ◽  
Luca Magnoni ◽  
Martin Pilát ◽  
Dagmar Adamová

With the explosion of the number of distributed applications, a new dynamic server environment emerged grouping servers into clusters, utilization of which depends on the current demand for the application. To provide reliable and smooth services it is crucial to detect and fix possible erratic behavior of individual servers in these clusters. Use of standard techniques for this purpose requires manual work and delivers sub-optimal results. Using only application agnostic monitoring metrics our machine learning based method analyzes the recent performance of the inspected server as well as the state of the rest of the cluster, thus checking not only the behavior of the single server, but the load on the whole distributed application as well. We have implemented our method in a Spark job running in the CERN MONIT infrastructure. In this contribution we present results of testing multiple machine learning algorithms and pre-processing techniques to identify the servers erratic behavior. We also discuss the challenges of deploying our new method into production.


Sign in / Sign up

Export Citation Format

Share Document