Biodiesel production from soybean oil using modified calcium loaded on rice husk activated carbon as a low-cost basic catalyst

2017 ◽  
Vol 53 (5) ◽  
pp. 807-813 ◽  
Author(s):  
Yujie Wang ◽  
Minghui Zhang ◽  
Xuefeng Ding
2014 ◽  
Vol 875-877 ◽  
pp. 196-201 ◽  
Author(s):  
Mohd Faisal Taha ◽  
Ahmad S. Rosman ◽  
Maizatul S. Shaharun

The potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Pb (II) ion from aqueous solution was investigated. Rice husk-based activated carbon was preparedviachemical activation process using NaOH followed by the carbonization process at 500°C. Morphological analysis was conducted using field-emission scanning electron microscope /energy dispersive X-ray (FESEM/EDX) on three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon. These three samples were also analyzed for their C, H, N, O and Si contents using CHN elemental analyzer and FESEM/EDX. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2adsorption. The adsorption studies using rice husk-based activated carbon as an adsorbent to remove Pb (II) ion from aqueous solution were carried out at a fixed initial concentration of Pb (II) ion (150 ppm) with varying adsorbent dose as a function of contact time at room temperature. The concentration of Pb (II) ion was determined by atomic absorption spectrophotometer (AAS). The removal of Pb (II) ion from aqueous solution increased from 35 % to 82 % when the amount of rice husk-based activated carbon was increased from 0.05 g to 0.30 g. The equilibrium data obtained from adsorption studies was found to fit both Langmuir and Freundlich adsorption isotherms.


2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2010 ◽  
Vol 148-149 ◽  
pp. 794-798 ◽  
Author(s):  
Xiao Hua Liu ◽  
Hai Xin Bai ◽  
Dong Jie Zhu ◽  
Geng Cao

In this paper, calcined river-snail shell was used as a novel solid base catalyst in the transesterification of soybean oil with methanol for biodiesel production. The calcined river-snail shell was characterized using field emission scanning electron microscope and X-ray diffraction. Effects of transesterification process variables were investigated. The results indicated that river-snail shell calcined at 800 °C catalyzed the transesterification of soybean oil for biodiesel with a yield over 98 % under the conditions including catalyst of 3.0% (w/w), a molar ratio of methanol/oil of 9:1, reaction time of 3 h, and reaction temperature of 65 °C. As a low-cost green catalyst, calcined river-snail shell could not only minimize the environmental wastes resulted from the solid shell, but also reduce the production costs of biodiesel.


Author(s):  
C O Ataguba ◽  
I Brink

The design and construction of low-cost laboratory-scale filter columns using locally available Nigerian filter materials - granular activated carbon (GAC), gravel (GR) and rice husk (RH) - were carried out and reported. The filter materials and columns were designed, constructed and used for the treatment of stormwater runoff from selected automobile workshops in Nigeria over a period of three rainy months. The combined granular activated carbon and rice husk filter systems performed best with pollutant removal efficiency of 58%. It was shown that the materials, considered as waste, could be recycled and used as filter materials in the treatment of stormwater from automobile workshops. This low-cost technology for stormwater runoff treatment, especially for automobile workshops at large scale and in-situ, can be further explored.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kanchana Dumri ◽  
Dau Hung Anh

Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10–20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40°C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%.


Author(s):  
Muhammad Irfan ◽  
Amir Shafeeq ◽  
Tahir Saleem Nasir ◽  
Farzana Bashir ◽  
Tausif Ahmad ◽  
...  

Removal of heavy metal ions (HMI) from water streams is desirable due to their toxic and carcinogenic effects. Therefore, this study was conducted to prepare a low cost adsorbent in the form of non-activated carbon (NAC) and activated carbon (AC) using rice husk, a local bio-waste material. Activation of material was performed by base leaching, chemical activation using ZnCl2, followed by acid washing. The initial and final concentrations of HMI in water were measured using Atomic Absorption Spectroscopy. Volatile matter, ash, moisture and surface area of the prepared material were measured using ASTM methods E 897- 88 R04, E 830 - 87 R04, E 949 - 88 R04 and D 1050 - 1 respectively. An enhancement factor was used to evaluate the activating effect of the adsorbent. Maximum % age removal of HMI was measured as 69.0, 64.0, 62.0 and 56% for Ni, Cd, Zn and Pb respectively using NAC. However, by using AC, a significant increase in the %age removal efficiency of HMI was observed and measured as 99.0, 95.5, 93.0 and 89% for Ni, Cd, Zn and Pb respectively. The results showed that AC derived from waste biomass is a simple, ecological and cost-effective approach to remove bulk of metal ions from water and wastewater.  


Author(s):  
Clement Oguche Ataguba ◽  
Isobel Brink

Abstract The efficiency of combined filtration media consisting of rice husk (RH), granular activated carbon (GAC) and gravel (GR) for the removal of metals cadmium, copper, lead and iron from stormwater runoff emanating from automobile workshops in Nigeria was investigated. Stormwater runoff samples were collected from five sites over a period of nine (9) weeks and filtered using two filter combinations, GAC – RH, GR – GAC as well as a RH-only filter. All the filters removed metals. Highest average singular metals removals were: approximately 74% copper for GR – GAC; 70% lead for RH, 67% iron for GAC – RH and 46% cadmium for GAC – RH. Average metals removal efficiencies (all metals combined) were GAC – RH 61%, GR – GAC 52% and RH-only 46%. The combined filter materials therefore showed better metals removal efficiencies than the RH-only filter. Further filtration of metals polluted stormwater would be required to lower the average metals concentration to meet local and international discharge standards. Future research into low cost modifications towards optimising the filter materials to improve metals removal efficiencies is recommended.


BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 10-18
Author(s):  
A Kumari Dhami ◽  
A Rajbhandari Nyachhyon

Activated carbon has been prepared from rice husk using laboratory fabricated open type carbonizer. The raw rice husk powder was named as RRH whereas chemically activated rice husk was named as CARH. Both samples were characterized by methylene blue number (MBN), iodine number (IN) and surface area. The MBN and IN of RRH was found to be 83 mg/g and 415 mg/g whereas CARH was 99 mg/g and 716 mg/g respectively which indicate the presence of mesoporosity and microporosity of the samples. The surface area of RRH was found to be  206 m2/g while CARH was found to be 531 m2/g. XRD analysis showed that the prepared materials were amorphous with some crystalline state while FTIR spectra showed the presence of different functional groups such as hydroxyl, carbonyl, Si-O-Si bond and aromatic group on the material. The adsorption properties of prepared samples were studied by using Langmuir and Freundlich isotherm models. Langmuir adsorption isotherm model was found to be best fitted. It showed that prepared materials have homogenous surface with monolayer type of adsorption. The maximum monolayer coverage (Qm) for RRH was found to be 55 mg/g and for CARH 143 mg/g. Thus, results revealed that laboratory fabricated low cost open type carbonizer is suitable for the preparation of activated carbon. BIBECHANA 18 (2021) 10-18


Sign in / Sign up

Export Citation Format

Share Document