Role of stabilizing agents in the formation of stable silver nanoparticles in aqueous solution: Characterization and stability study

2016 ◽  
Vol 38 (5) ◽  
pp. 626-631 ◽  
Author(s):  
Krutagn Patel ◽  
Bhavesh Bharatiya ◽  
Tulsi Mukherjee ◽  
Tejal Soni ◽  
Atindra Shukla ◽  
...  
2021 ◽  
Vol 9 (2) ◽  
pp. 214-230
Author(s):  
Surindra Negi ◽  
◽  
Vir Singh ◽  
Jyoti Rawat ◽  
◽  
...  

Heavy metal pollution is of great concern and cannot be ignored as heavy metals are highly mobile in soil and are recalcitrant. Nanotechnology provides a novel sustainable approach for synthesizing materials of desired properties, composition, and structure, it is however expected to adsorb heavy metals and play a significant role in water treatment. Green chemistry is the cost-effective, non-toxic, and environment friendly approach that involves the use of biological components as reducing and stabilizing agents for the synthesis of nanoparticles. In the present study, heavy metals such as cadmium (Cd II) and lead (Pb II) were successfully removed from its aqueous solution by an adsorption process using the silver nanoparticles of size ~15nm biosynthesized using freshwater algal extract. The adsorption peak at 411 nm confirms the formation of silver nanoparticles. The maximum value of metal ion adsorption capacity (23.98 mg/g) was observed for Pb (II). The higher value of R2 showed that the experimental data were fitted best with Langmuir isotherm. The rate kinetics study showed that Pb (II) adsorption on Ag nanoparticles followed pseudo-second order kinetics (R2>0.9) indicating that Pb (II) was attached to the nanoparticles surface through electrostatic force of attraction, also referred to as chemisorption whereas Cd (II) adsorption on Ag nanoparticles followed pseudo-first order kinetics (R2 >0.8) indicating physical adsorption between adsorbate and adsorbent.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Isadora Dantas Costa ◽  
Alcides de Oliveira Wanderley Neto ◽  
Heloiza Fernanda Oliveira da Silva ◽  
Edgar Perin Moraes ◽  
Eryka Thamyris Damascena Nóbrega ◽  
...  

We show that sodium 9,10-epoxy-12-hydroxytetradecanoate (SEAR), an epoxidized derivative of ricinoleic acid, simultaneously functioned as reducing and stabilizing agents in the synthesis of silver nanoparticles in alkaline aqueous medium. The advantage of using SEAR is its biodegradability and nontoxicity, which are important characteristics for mitigation of environmental impact upon discharge of nanoparticles into terrestrial and aquatic ecosystems. The SEAR concentration was found to impact considerably the size distribution of silver nanoparticles (AgNPs). A concentration below the SEAR critical micelle concentration (CMC) generated 23 nm sized AgNPs with 10 nm standard deviation, while 50 nm sized AgNPs (σ=21 nm) were obtained at a concentration above the SEAR CMC. FTIR analysis revealed that the carboxylate that constitutes the SEAR hydrophilic head binds directly to the AgNPs surface promoting stabilization in solution. Finally, AgNPs turned into Ag2S upon contact with wastewater samples from Wastewater Treatment Plant at Federal University of Rio Grande do Norte (UFRN), Brazil, which is an interesting result, since Ag2S is more environmentally friendly than pure AgNPs.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


Author(s):  
M.H.H. Awaad ◽  
K.M. El. Moustafa ◽  
S.A. Zoulfakar ◽  
M.S. Elhalawany ◽  
F.F. Mohammed ◽  
...  

ChemPhysChem ◽  
2008 ◽  
Vol 9 (9) ◽  
pp. 1309-1316 ◽  
Author(s):  
Hao Zhang ◽  
Yi Liu ◽  
Chunlei Wang ◽  
Junhu Zhang ◽  
Haizhu Sun ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Stefan Lis ◽  
Krzysztof Staninski ◽  
Tomasz Grzyb

The europium (III) complex of coumarin-3-carboxylic acid (C3CA) has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence) spectroscopy. The synthesised complex having a formula Eu was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III)/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III) ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET) in the generated ECL.


2013 ◽  
Vol 65 ◽  
pp. S104
Author(s):  
Manuel Alejandro Ramirez-Lee ◽  
Hector Rosas-Hernandez ◽  
Samuel Salazar-Garcia ◽  
Jose Manuel Gutiérrez-Hernández ◽  
Ricardo Espinosa- Tanguma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document