scholarly journals Characterization of catchment behaviour and rainfall selection for flash flood hydrological model calibration: catchments of the eastern Pyrenees

2015 ◽  
Vol 60 (3) ◽  
pp. 424-447 ◽  
Author(s):  
P.A. Garambois ◽  
H. Roux ◽  
K. Larnier ◽  
D. Labat ◽  
D. Dartus
Author(s):  
Yohei Koizumi ◽  
Masayuki Kuzuhara ◽  
Masashi Omiya ◽  
Teruyuki Hirano ◽  
John Wisniewski ◽  
...  

Abstract We present the optical spectra of 338 nearby M dwarfs, and compute their spectral types, effective temperatures (Teff), and radii. Our spectra were obtained using several optical spectrometers with spectral resolutions that range from 1200 to 10000. As many as 97% of the observed M-type dwarfs have a spectral type of M3–M6, with a typical error of 0.4 subtype, among which the spectral types M4–M5 are the most common. We infer the Teff of our sample by fitting our spectra with theoretical spectra from the PHOENIX model. Our inferred Teff is calibrated with the optical spectra of M dwarfs whose Teff have been well determined with the calibrations that are supported by previous interferometric observations. Our fitting procedures utilize the VO absorption band (7320–7570 Å) and the optical region (5000–8000 Å), yielding typical errors of 128 K (VO band) and 85 K (optical region). We also determine the radii of our sample from their spectral energy distributions. We find most of our sample stars have radii of <0.6 R⊙, with the average error being 3%. Our catalog enables efficient sample selection for exoplanet surveys around nearby M-type dwarfs.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Vesna Đukić ◽  
Ranka Erić

Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.


Author(s):  
Ida K. Westerberg ◽  
Anna E. Sikorska-Senoner ◽  
Daniel Viviroli ◽  
Marc Vis ◽  
Jan Seibert

2021 ◽  
Author(s):  
Markus Hrachowitz ◽  
Petra Hulsman ◽  
Hubert Savenije

<p>Hydrological models are often calibrated with respect to flow observations at the basin outlet. As a result, flow predictions may seem reliable but this is not necessarily the case for the spatiotemporal variability of system-internal processes, especially in large river basins. Satellite observations contain valuable information not only for poorly gauged basins with limited ground observations and spatiotemporal model calibration, but also for stepwise model development. This study explored the value of satellite observations to improve our understanding of hydrological processes through stepwise model structure adaption and to calibrate models both temporally and spatially. More specifically, satellite-based evaporation and total water storage anomaly observations were used to diagnose model deficiencies and to subsequently improve the hydrological model structure and the selection of feasible parameter sets. A distributed, process based hydrological model was developed for the Luangwa river basin in Zambia and calibrated with respect to discharge as benchmark. This model was modified stepwise by testing five alternative hypotheses related to the process of upwelling groundwater in wetlands, which was assumed to be negligible in the benchmark model, and the spatial discretization of the groundwater reservoir. Each model hypothesis was calibrated with respect to 1) discharge and 2) multiple variables simultaneously including discharge and the spatiotemporal variability in the evaporation and total water storage anomalies. The benchmark model calibrated with respect to discharge reproduced this variable well, as also the basin-averaged evaporation and total water storage anomalies. However, the evaporation in wetland dominated areas and the spatial variability in the evaporation and total water storage anomalies were poorly modelled. The model improved the most when introducing upwelling groundwater flow from a distributed groundwater reservoir and calibrating it with respect to multiple variables simultaneously. This study showed satellite-based evaporation and total water storage anomaly observations provide valuable information for improved understanding of hydrological processes through stepwise model development and spatiotemporal model calibration.</p>


1992 ◽  
Vol 12 (5) ◽  
pp. 2372-2382
Author(s):  
K M Arndt ◽  
S L Ricupero ◽  
D M Eisenmann ◽  
F Winston

A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition.


2018 ◽  
Vol 22 (8) ◽  
pp. 4593-4604 ◽  
Author(s):  
Yongqiang Zhang ◽  
David Post

Abstract. Gap-filling streamflow data is a critical step for most hydrological studies, such as streamflow trend, flood, and drought analysis and hydrological response variable estimates and predictions. However, there is a lack of quantitative evaluation of the gap-filled data accuracy in most hydrological studies. Here we show that when the missing data rate is less than 10 %, the gap-filled streamflow data obtained using calibrated hydrological models perform almost the same as the benchmark data (less than 1 % missing) when estimating annual trends for 217 unregulated catchments widely spread across Australia. Furthermore, the relative streamflow trend bias caused by the gap filling is not very large in very dry catchments where the hydrological model calibration is normally poor. Our results clearly demonstrate that the gap filling using hydrological modelling has little impact on the estimation of annual streamflow and its trends.


2013 ◽  
Vol 13 (12) ◽  
pp. 3145-3156 ◽  
Author(s):  
M. Velasco ◽  
P. A. Versini ◽  
A. Cabello ◽  
A. Barrera-Escoda

Abstract. Global change may imply important changes in the future occurrence and intensity of extreme events. Climate scenarios characterizing these plausible changes were previously obtained for the Llobregat River basin (NE Spain). This paper presents the implementation of these scenarios in the HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological model. Then, the expected changes in terms of flash flood occurrence and intensity are assessed for two different sub-basins: the Alt Llobregat and the Anoia (Llobregat River basin). The assessment of future flash floods has been done in terms of the intensity and occurrence of extreme events, using a peak over threshold (POT) analysis. For these two sub-basins, most of the simulated scenarios present an increase of the intensity of the peak discharge values. On the other hand, the future occurrence follows different trends in the two sub-basins: an increase is observed in Alt Llobregat but a decrease occurs in Anoia. Despite the uncertainties that appear in the whole process, the results obtained can shed some light on how future flash floods events may occur.


2014 ◽  
Vol 18 (1) ◽  
pp. 353-365 ◽  
Author(s):  
U. Haberlandt ◽  
I. Radtke

Abstract. Derived flood frequency analysis allows the estimation of design floods with hydrological modeling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices regarding precipitation input, discharge output and consequently the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets and to propose the most suitable approach. Event based and continuous, observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output, short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in northern Germany with the hydrological model HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System). The results show that (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, and (III) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the application for derived flood frequency analysis.


Sign in / Sign up

Export Citation Format

Share Document