Forecast of daily water levels for Lake Kimieret, Israel

1995 ◽  
Vol 40 (2) ◽  
pp. 133-143 ◽  
Author(s):  
V. KHAVICH ◽  
A. BEN-ZVI
Keyword(s):  
2020 ◽  
Author(s):  
Naoki Sakurai ◽  
Chiyuki Narama ◽  
Mirlan Daiyrov ◽  
Muhammed Esenamanov ◽  
Zarylbek Usekov ◽  
...  

Abstract. To better understand the storage in and drainage through supraglacial lakes and englacial conduits, we investigated the daily water-level variations of supraglacial lakes on the southern Inylchek Glacier in Kyrgyzstan. To examine these variations, we used daily aerial digital images over three years (22 July–15 August 2017, 8–29 July 2018, and 12–19 July 2019) from an unmanned aerial vehicle (UAV) that were converted to digital surface models (DSMs) and ortho-images. Our main results are as follows. 1) When one lake drained, the water levels of other lakes might simultaneously increase, indicating that drainage water is shared with several lakes through a main englacial conduit. In one drainage event, a branch englacial conduit clearly connected to a main englacial conduit. 2) Sometimes, several lakes discharged simultaneously, indicating that several lakes had connected to a main englacial conduit that had opened. Such a case can cause larger-scale drainage than that from the opening of a branch englacial conduit. 3) Several lakes discharged twice in the same year, each time through a different conduit, indicating that the main englacial conduit can be abandoned and reused. 4) In some lakes, the water level gradually increased with nearly the same increase rate just before drainage. Such an increase may be an indicator of imminent lake drainage.


Water History ◽  
2021 ◽  
Author(s):  
Maria C. Monteleone ◽  
Martin Crapper ◽  
Davide Motta

AbstractThe term lacus generally identified the public fountains in the main streets of ancient Roman towns, providing for the population daily water demand. The simplest lacus consisted of a stone basin and a spout stone, concealing one or two supply pipes. 35 street fountains of this type have been surveyed in Pompeii, to gather information on their supply and its variation in time. A new method was devised for calculating the discharge through the overflow channel of each lacus, and this value was taken as an estimate of the water supplied to each fountain. The overflow channel internal cross-section width was measured at four elevations, and the cross-section profile was reconstructed based on these data. Three water levels of 1 cm, half of the cross-section height and entire cross section height, were considered at each channel’s inlet, obtaining a corresponding channel discharge. The values obtained, ranging from 0.03 to 2.9 l/s, were checked against the trajectory of the fountain water jet, making sure that it remained within the basin length. For 28 fountains the average discharge was found to be 0.08 l/s when the water was at the lowest level, 0.43 l/s for the intermediate level and 1.18 l/s for a full inlet. The average time of residence of the water, in the lacus draw basin, was estimated between 11 min and 3 h. An estimate of the demand of all the town lacus was compared with the capacity of the aqueduct channel entering at Porta Vesuvio: the town lacus could have been supplied contemporaneously at the minimum and intermediate discharges.


Wetlands ◽  
2021 ◽  
Vol 41 (6) ◽  
Author(s):  
Jennifer M. Cartwright ◽  
William J. Wolfe

AbstractThe hydrology of seasonally inundated depression wetlands can be highly sensitive to climatic fluctuations. Hydroperiod—the number of days per year that a wetland is inundated—is often of primary ecological importance in these systems and can vary interannually depending on climate conditions. In this study we re-examined an existing hydrologic model to simulate daily water levels in Sinking Pond, a 35-hectare seasonally inundated karst-depression wetland in Tennessee, USA. We recalibrated the model using 22 years of climate and water-level observations and used the recalibrated model to reconstruct (hindcast) daily water levels over a 165-year period from 1855 to 2019. A trend analysis of the climatic data and reconstructed water levels over the hindcasting period indicated substantial increases in pond hydroperiod over time, apparently related to increasing regional precipitation. Wetland hydroperiod increased on average by 5.9 days per decade between 1920 and 2019, with a breakpoint around the year 1970. Hydroperiod changes of this magnitude may have profound consequences for wetland ecology, such as a transition from a forested wetland to a mostly open-water pond at the Sinking Pond site. More broadly, this study illustrates the needs for robust hydrologic models of depression wetlands and for consideration of model transferability in time (i.e., hindcasting and forecasting) under non-stationary hydroclimatic conditions. As climate change is expected to influence water cycles, hydrologic processes, and wetland ecohydrology in the coming decades, hydrologic model projections may become increasingly important to detect, anticipate, and potentially mitigate ecological impacts in depression wetland ecosystems.


2019 ◽  
Vol 20 (3) ◽  
pp. 787-799
Author(s):  
G. Viccione ◽  
C. Guarnaccia ◽  
S. Mancini ◽  
J. Quartieri

Abstract In this paper a statistical study on the time series of water levels measured, during 2014, in the water tank of Cesine, Avellino (Italy), is presented. In particular, the autoregressive integrated moving average (ARIMA) forecasting methodology is applied to model and forecast the daily water levels. This technique combines the autoregression and the moving average approaches, with the possibility to differentiate the data, to make the series stationary. In order to better describe the trend, over time, of the water levels in the reservoir, three ARIMA models are calibrated, validated and compared: ARIMA (2,0,2), ARIMA (3,1,3), ARIMA (6,1,6). After a preliminary statistical characterization of the series, the models' parameters are calibrated on the data related to the first 11 months of 2014, in order to keep the last month of data for validating the results. For each model, a graphical comparison with the observed data is presented, together with the calculation of the summary statistics of the residuals and of some error metrics. The results are discussed and some further possible applications are highlighted in the conclusions.


Author(s):  
Dániel Koch ◽  
◽  
Enikő Anna Tamás ◽  
Beáta Bényi ◽  
◽  
...  

Hydro-meteorological investigation of the small catchments of the East region of the Mecsek hills has been carried out since the 1960s. In frame of the research, daily water levels of the main creek of the region (Völgységi-creek) have been recorded at two gauging stations: for the upper reach in Magyaregregy settlement and for the lower reach in Bonyhád city. On the upper reach the water levels of one of the most important tributaries of the Völgységi-creek: Hodácsi-creek are also recorded. There are three rain gauges as well that record daily rainfall since the 1960s. In our study we carried out statistical analyses of the 50 years long data series of the above-mentioned hydrometeorological measurement stations, and we provide information about the changes that can be observed in the runoff characteristics of the creeks, we as well established correlations between the rainfall and the runoff characteristics and determined the extremities and the changes in their frequencies of occurrence. The above studies can help us understand the climatic changes i.e. in the temporal distribution of the rainfall and runoff and may help us develop better strategies in order to prepare for the probably more frequently occurring flash floods.


Author(s):  
V.A. Naumov ◽  

The advanced Mathcad program are proposed for processing large amounts of information about daily water levels in rivers. The results of observations of the hydrological posts of Roshydromet over the level of the Msta River (Neva basin) for 10 years (2009-2018) served as initial data. The analysis showed a close re-lationship to the stochastic slopes of the water surface (SWS) with the water levels. The coefficient of pair correlation between them remained above 0.7 in all years. The range of changes in SWS is rather narrow: 0.166 to 0.194%. The obtained linear regression equations agree quite satisfactorily with the observational data. The determination index is in the range from 0.608 to 0.859. The results of the study can be used for short-term forecasting of the passage of a flood wave.


2021 ◽  
Vol 3 ◽  
Author(s):  
Gloria Mozzi ◽  
Paul Pavelic ◽  
Mohammad F. Alam ◽  
Catalin Stefan ◽  
Karen G. Villholth

In semi-arid India, managed aquifer recharge (MAR) is often used to enhance aquifer storage, and by implication, water security, and climate resilience, by capturing surface runoff, mainly through check dams implemented at the community level. Despite their extensive use, the design of these structures typically does not follow a systematic method to maximize performance. To aid in the improvement of check dam design parameters and location siting, we develop a dynamic tool, which integrates the daily water balance of a check dam with analytical infiltration equations to assess check dam performance measured as temporal dynamics of storage, infiltration, and evaporation. The tool is implemented in R environment and requires meteorological and hydrogeological data, as well as check dam geometry and nearby well-abstractions, if any. The tool is applied to a case study in Saurashtra in Gujarat, where field visits were conducted. Simulations show that typical check dams in the area are able to store a volume between three and seven times their storage capacity annually. Infiltration volumes highly depend on hydroclimatic and hydrogeological conditions, as well as the formation of a clogging layer, highlighting the importance of site selection and periodic maintenance. The tool is validated with data from a previous study in Rajasthan, where daily water balance parameters were monitored. Validation results show an average R2 of 0.93 between the simulated and measured water levels. The results are adequate to suggest that the tool is able to assist in check dam planning in semi-arid environments.


Author(s):  
E. M. B. Sorensen ◽  
R. R. Mitchell ◽  
L. L. Graham

Endemic freshwater teleosts were collected from a portion of the Navosota River drainage system which had been inadvertently contaminated with arsenic wastes from a firm manufacturing arsenical pesticides and herbicides. At the time of collection these fish were exposed to a concentration of 13.6 ppm arsenic in the water; levels ranged from 1.0 to 20.0 ppm during the four-month period prior. Scale annuli counts and prior water analyses indicated that these fish had been exposed for a lifetime. Neutron activation data showed that Lepomis cyanellus (green sunfish) had accumulated from 6.1 to 64.2 ppm arsenic in the liver, which is the major detoxification organ in arsenic poisoning. Examination of livers for ultrastructural changes revealed the presence of electron dense bodies and large numbers of autophagic vacuoles (AV) and necrotic bodies (NB) (1), as previously observed in this same species following laboratory exposures to sodium arsenate (2). In addition, abnormal lysosomes (AL), necrotic areas (NA), proliferated rough endoplasmic reticulum (RER), and fibrous bodies (FB) were observed. In order to assess whether the extent of these cellular changes was related to the concentration of arsenic in the liver, stereological measurements of the volume and surface densities of changes were compared with levels of arsenic in the livers of fish from both Municipal Lake and an area known to contain no detectable level of arsenic.


Sign in / Sign up

Export Citation Format

Share Document