scholarly journals Laser and Material Parameter Dependence of the Chemical Modifications in the UV Laser Processing of Model Polymeric Solids

2002 ◽  
Vol 20 (1) ◽  
pp. 1-21 ◽  
Author(s):  
E. Andreou ◽  
A. Athanassiou ◽  
D. Fragouli ◽  
D. Anglos ◽  
S. Georgiou

Chemical modifications are expected to be the major type of side-effect in the UV laser processing of molecular substrates. For their systematic characterization, studies on polymeric systems consisting of poly(methyl methacrylate) and polystyrene films doped with aromatic dopants exemplifying different degrees of photoreactivity are undertaken. In particular, the dependence of the nature and extent of the modifications on chromophore properties and laser parameters (laser fluence, wavelength, and number of pulses) is examined. The substrate absorptivity and the number of employed laser pulses turn out to be the critical parameters in determining the quantity and nature of photoproducts that remain in the substrate. The implications of these results for the optimisation of laser processing of molecular/organic solids are discussed. It is suggested that the importance of employing relatively strongly absorbed wavelengths in laser processing may relate, besides the efficient etching and good surface morphology, to the minimization of the chemical modifications. In contrast, irradiation with successive laser pulses is indicated to be highly disadvantageous for the chemical integrity of the substrate. In all, the study of such model systems appears to be most appropriate for establishing criteria for the systematic optimisation of laser processing techniques of molecular substrates.

2003 ◽  
Vol 217 (12) ◽  
pp. 1577-1596 ◽  
Author(s):  
Nadia Elghobashi ◽  
Leticia González ◽  
Jörn Manz

AbstractIntense few-cycle femtosecond (fs) infrared (IR) laser pulses yield dynamical symmetry breaking of oriented strong symmetric hydrogen bonds A···H···A due to nearly coherent vibrational excitation. Consequently, the system evolves with alternate stretches or compressions of the competing bonds A···H and H···A. For a specific stretch of, say, the H···A bond, an ultrashort ultraviolet (UV) laser pulse may induce a nearly instantaneous electronic excitation and/or photo-detachment by means of a Franck–Condon(FC)-type transition to a dissociative potential energy surface of the excited state. The stretched bond, H····A, will then dissociate selectively, yielding preferably the products AH+A. A minor fraction of the other products A+HA may also be formed due to competing wavepacket dispersion. The corresponding isotope effects are investigated by means of the representative laser driven molecular wavepackets which are propagated on ab initio potential energy surfaces and with ab initio dipole coupling for the model systems, FHF− versus FDF−. The resulting quantum dynamics for both systems are nearly equivalent if the driving IR laser fields are scaled with decreasing carrier frequency and amplitudes and increasing durations for the corresponding increasing masses of the isotopomers.


2011 ◽  
Vol 121-126 ◽  
pp. 147-151
Author(s):  
Mao Lu Wang ◽  
Yang Wang ◽  
Lei Qin ◽  
Jian Guan

Sapphire is an important wide bandgap semiconductor material for developing UV/blue optoelectronic devices, however because of its high hardness and chemical stability; it is mechanically and chemically difficult machine. In this paper, the scribing of sapphire by UV laser pulses is investigated under various conditions of pulse energies, scanning speed and repetition rate. The quality and morphology of the laser ablation of sapphire surface are evaluated by scanning electron microscopy. The mechanism of UV laser ablation of sapphire is discussed. The formation of grooves with high aspect ratio and good surface quality is achieved by selecting appropriate laser parameters. Scribing by pulsed UV laser therefore provide a new approach in the development of sapphire-based devices.


2013 ◽  
Vol 543 ◽  
pp. 381-384 ◽  
Author(s):  
Manabu Kanno ◽  
Hirohiko Koho ◽  
Hirobumi Mineo ◽  
Sheng Hsien Lin ◽  
Yuichi Fujimura

In recent years, laser control of electrons in molecular system and condensed matter has attracted considerable attention with rapid progress in laser science and technology [. In particular, control of π-electron rotation in photo-induced chiral aromatic molecules has potential utility to the next-generation ultrafast switching devices. In this paper, we present a fundamental principle of generation of ultrafast coherent ring currents and the control in photo-induced aromatic molecules. This is based on quantum dynamics simulations of π-electron rotations and preparation of unidirectional angular momentum by ultrashort UV laser pulses properly designed. For this purpose, we adopt 2,5-dichloro [(3,6) pyrazinophane (DCPH) fixed on a surface, which is a real chiral aromatic molecule with plane chirality. Here π electrons can be rotated along the aromatic ring clockwise or counterclockwise by irradiation of a linearly polarized laser pulse with the properly designed photon polarization direction and the coherent ring current with the definite direction along the aromatic ring is prepared. This is contrast to ordinary ring current in an achiral aromatic ring molecule with degenerate electronic excited state, which is prepared by a circularly polarized laser [2]. In this case, π electrons rotate along the Z-axis of the laboratory coordinates, while for the present case electrons rotate along the z-axis in molecular Cartesian coordinates. It should be noted that signals originated from the coherent ring currents prepared by linearly polarized ultrashort UV lasers are specific to the chiral molecule of interest.


Author(s):  
Jean-Paul Mazellier ◽  
Cyril Di Giola ◽  
Pierre Legagneux ◽  
Clement Hebert ◽  
Emmanuel Scorsonne ◽  
...  
Keyword(s):  

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 372 ◽  
Author(s):  
Samuel Ligon ◽  
Gurdial Blugan ◽  
Jakob Kuebler

Freestanding SiCNO ceramic pieces with sub-mm features were produced by laser crosslinking of carbosilane and silazane polymer precursors followed by pyrolysis in inert atmosphere. Three different pulsed UV laser systems were investigated, and the influence of laser wavelength, operating power and scanning speed were all found to be important. Different photoinitiators were tested for the two lasers operating at 355 nm, while for the 266 nm laser, crosslinking occurred also without photoinitiator. Pre-treatment of glass substrates with fluorinated silanes was found to ease the release of green bodies during solvent development. Polymer crosslinking was observed with all three of the laser systems, as were bubbles, surface charring and in some cases ablation. By focusing the laser beam several millimeters above the surface of the resin, selective polymer crosslinking was observed exclusively.


1992 ◽  
Vol 285 ◽  
Author(s):  
W.W. Duley ◽  
G. Kinsman

ABSTRACTExcimer laser radiation may be used to process metal surfaces in a variety of novel ways. The simplest of these involves the use of UV laser pulses for ablation. Ablation occurs as the result of both vaporization and hydrodynamical effects. Experimental data related to these processes will be discussed. In addition, it will be shown how specific irradiation regimes can yield metal surfaces with unique radiative properties.


2015 ◽  
Vol 73 (3) ◽  
pp. 637-648 ◽  
Author(s):  
Francesco Itri ◽  
Daria M. Monti ◽  
Bartolomeo Della Ventura ◽  
Roberto Vinciguerra ◽  
Marco Chino ◽  
...  

2020 ◽  
Vol 17 (35) ◽  
pp. 739-752
Author(s):  
Hayder J. ABDULRAHMAN ◽  
Suzan B. MOHAMMED

Ultra-short laser pulses are particularly suitable for processing micro tools made of ultra-hard and dielectric materials. Ultra-short laser pulses provide a contact-free and precise fabrication of heat-sensitive materials such as visible spectra range. Visible spectra range has unique properties, which makes it an essential material in the tool, jewelry, and semiconductor industries. The processing of visible spectra range by ultra-short laser pulses is complex, as visible and near-infrared light is generally not absorbed. However, the intensity of ultra-short laser pulses is extremely high, so that the absorption scales nonlinearly with the intensity and, thus, visible or near-infrared light can be absorbed. The complexity also results from many partially interdependent process variables, such as the repetition rate, pulse overlap, track overlap, and scan speed. Excellent knowledge of the process is, therefore, essential for the production of micro tools. To make the laser processing accessible to a broader user field, the operator can be supported by a computer-aided design (CAD). The aim of this research was to the modeling of an ultra-short high-intensity laser for the visible spectra range in different environments of the angle of incidence, scanning speed, pulse, and track overlap. The experimental process included ultra-short pulsed laser processing of visible spectra range and surface analysis concerning modifications and ablation of the ultra-short laser. Ablation volumes were analyzed for single pulses, multi-pulses, and pockets. Pump-probe experiments reveal transient optical properties such as transmission or reflectivity. It was concluded that ultraviolet laser pulses are best suited to induce damage or modifications to visible spectra range surfaces. Additionally, shorter wavelengths have further advantages such as potentially longer Rayleigh lengths and smaller spot sizes.


Sign in / Sign up

Export Citation Format

Share Document