scholarly journals Removal of Fine Particles from Smooth Flat Surfaces by Consecutive Pulse Air Jets

1995 ◽  
Vol 23 (4) ◽  
pp. 665-673 ◽  
Author(s):  
Yoshio Otani ◽  
Norikazu Namiki ◽  
Hitoshi Emi
1993 ◽  
Vol 19 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Yoshio Otani ◽  
Hitoshi Emi ◽  
Tetsuya Morizane ◽  
Jisaku Mori

2017 ◽  
Vol 112 ◽  
pp. 194-203 ◽  
Author(s):  
Ştefan-Mugur Simionescu ◽  
Nicoleta-Octavia Tănase ◽  
Diana Broboană ◽  
Corneliu Bălan

1994 ◽  
Vol 12 (0) ◽  
pp. 155-160 ◽  
Author(s):  
Yoshio Otani ◽  
Hitoshi Emi ◽  
Tetsuya Morizane ◽  
Jisaku Mori

Author(s):  
Robert F. Dunn

Receptor cells of the cristae in the vestibular labyrinth of the bullfrog, Rana catesbiana, show a high degree of morphological organization. Four specialized regions may be distinguished: the apical region, the supranuclear region, the paranuclear region, and the basilar region.The apical region includes a single kinocilium, approximately 40 stereocilia, and many small microvilli all projecting from the apical cell surface into the lumen of the ampulla. A cuticular plate, located at the base of the stereocilia, contains filamentous attachments of the stereocilia, and has the general appearance of a homogeneous aggregation of fine particles (Fig. 1). An accumulation of mitochondria is located within the cytoplasm basal to the cuticular plate.


Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
Sumio Iijima

We have developed a technique to prepare thin single crystal films of graphite for use as supporting films for high resolution electron microscopy. As we showed elsewhere (1), these films are completely noiseless and therefore can be used in the observation of phase objects by CTEM, such as single atoms or molecules as a means for overcoming the difficulties because of the background noise which appears with amorphous carbon supporting films, even though they are prepared so as to be less than 20Å thick. Since the graphite films are thinned by reaction with WO3 crystals under electron beam irradiation in the microscope, some small crystallites of WC or WC2 are inevitably left on the films as by-products. These particles are usually found to be over 10-20Å diameter but very fine particles are also formed on the film and these can serve as good test objects for studying the image formation of phase objects.


Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


Sign in / Sign up

Export Citation Format

Share Document