scholarly journals Fowlpox virus: Its structural proteins and immunogens and the detection of viral‐specific antibodies by Elisa

1987 ◽  
Vol 16 (3) ◽  
pp. 493-504 ◽  
Author(s):  
A. P. A. Mockett ◽  
D. J. Southee ◽  
F. M. Tomley ◽  
A. Deuter
2018 ◽  
Vol 58 (3) ◽  
pp. 345-352
Author(s):  
Yilong Zhu ◽  
Shouwen Du ◽  
Yang Zhang ◽  
Jingwei Liu ◽  
Yan Guo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zuzanna Kaźmierczak ◽  
Joanna Majewska ◽  
Paulina Miernikiewicz ◽  
Ryszard Międzybrodzki ◽  
Sylwia Nowak ◽  
...  

Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.


1998 ◽  
Vol 72 (10) ◽  
pp. 8327-8331 ◽  
Author(s):  
Andreas Henke ◽  
Elke Wagner ◽  
J. Lindsay Whitton ◽  
Roland Zell ◽  
Axel Stelzner

ABSTRACT Vaccination with DNA and recombinant vaccinia viruses (rec.VV) has been studied with the coxsackievirus B3 (CVB3) model system. Plasmids encoding all structural proteins of CVB3, when injected intramuscularly, induced only low levels of virus-specific antibodies. However, DNA vaccination with the major structural protein VP1 protected 72.2% of mice from lethal challenge, whereas VP1 expressed by rec.VV was much less efficient.


2002 ◽  
Vol 76 (19) ◽  
pp. 9844-9855 ◽  
Author(s):  
Denise Boulanger ◽  
Philip Green ◽  
Brenda Jones ◽  
Gwenn Henriquet ◽  
Lawrence G. Hunt ◽  
...  

ABSTRACT Genes encoding fowlpox virus (FWPV) structural proteins have been identified mainly by sequence homology with those from vaccinia virus (VACV), but little is known about the encoded proteins. Production of monoclonal antibodies (MAbs) against Poxine and HP1-440 (Munich) clone FP9 allowed the identification of three immunodominant FWPV proteins: the 39-kDa core protein (encoded by FPV168, homologous to VACV A4L), a 30- and 35-kDa protein doublet, and an abundant 63-kDa protein. The 30- and 35-kDa proteins are nonglycosylated, antigenically related proteins present in the intracellular mature virus membrane and localizing closely with the viral factories. N-terminal sequencing identified the 35-kDa protein as encoded by FPV140 (the FWPV homolog of VACV H3L). The 63-kDa protein forms covalently linked dimers and oligomers. It remained mainly insoluble upon detergent treatment of purified virus but did not localize closely with the viral factory. N-terminal sequencing was unsuccessful, suggesting N-terminal blocking. CNBr digestion generated a peptide encoded by FPV191, predicted to encode one of two FWPV A-type inclusion (ATI) proteins. The characteristics of the 63-kDa protein were inconsistent with published observations on cowpox or VACV ATI proteins (it appears to be essential). The 63-kDa protein, however, shares characteristics with both VACV p4c virus occlusion and 14-kDa fusion proteins. Gene assignment at the poxvirus ATI locus (between VACV A24R and A28L) is complicated by sequence redundancies and variations, often due to deletions and multiple frameshift mutations. The identity of FPV191 in relation to genes at this locus is discussed.


1989 ◽  
Vol 33 (3) ◽  
pp. 458 ◽  
Author(s):  
K. Nazerian ◽  
S. Dhawale ◽  
W. S. Payne

2020 ◽  
Author(s):  
Jing Zhang ◽  
Ruth Cruz-cosme ◽  
Meng-Wei Zhuang ◽  
Dongxiao Liu ◽  
Yuan Liu ◽  
...  

AbstractCoronavirus possesses the largest RNA genome among all the RNA viruses. Its genome encodes about 29 proteins. Most of the viral proteins are non-structural proteins (NSP) except envelop (E), membrane (M), nucleocapsid (N) and Spike (S) proteins that constitute the viral nucleocapsid, envelop and surface. We have recently cloned all the 29 SARS-CoV-2 genes into vectors for their expressions in mammalian cells except NSP11 that has only 14 amino acids (aa). We are able to express all the 28 cloned SARS-CoV-2 genes in human cells to characterize their subcellular distributions. The proteins of SARS-CoV-2 are mostly cytoplasmic but some are both cytoplasmic and nuclear. Those punctate staining proteins were further investigated by immunofluorescent assay (IFA) using specific antibodies or by co-transfection with an organelle marker-expressing plasmid. As a result, we found that NSP15, ORF6, M and ORF7a are related to Golgi apparatus, and that ORF7b, ORF8 and ORF10 colocalize with endoplasmic reticulum (ER). Interestingly, ORF3a distributes in cell membrane, early endosome, endosome, late endosome and lysosome, which suggests that ORF3a might help the infected virus to usurp endosome and lysosome for viral use. Furthermore, we revealed that NSP13 colocalized with SC35, a protein standing for splicing compartments in the nucleus. Our studies for the first time visualized the subcellular locations of SARS-CoV-2 proteins and might provide novel insights into the viral proteins’ biological functions.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
A.D. Hyatt

Bluetongue virus (BTV) is the type species os the genus orbivirus in the family Reoviridae. The virus has a fibrillar outer coat containing two major structural proteins VP2 and VP5 which surround an icosahedral core. The core contains two major proteins VP3 and VP7 and three minor proteins VP1, VP4 and VP6. Recent evidence has indicated that the core comprises a neucleoprotein center which is surrounded by two protein layers; VP7, a major constituent of capsomeres comprises the outer and VP3 the inner layer of the core . Antibodies to VP7 are currently used in enzyme-linked immunosorbant assays and immuno-electron microscopical (JEM) tests for the detection of BTV. The tests involve the antibody recognition of VP7 on virus particles. In an attempt to understand how complete viruses can interact with antibodies to VP7 various antibody types and methodologies were utilized to determine the physical accessibility of the core to the external environment.


Sign in / Sign up

Export Citation Format

Share Document