scholarly journals The effect of prosthetic torsional stiffness on the golf swing kinematics of a left and a right-sided trans-tibial amputee

2004 ◽  
Vol 28 (2) ◽  
pp. 121-131 ◽  
Author(s):  
J. P. Rogers ◽  
S. C. Strike ◽  
E. S. Wallace

The golf swing is a biomechanically complex movement requiring three-dimensional movements at the ankle joint complex (AJC), the hips and shoulders. Trans-tibial amputees lose the natural AJC movements as many prostheses do not allow three dimensional foot movements. Torsion devices have been developed and incorporated into prostheses to facilitate internal and external transverse plane rotations. These devices can help amputees to compensate for the loss of movement and to reduce shearing stresses at the stump-socket interface. The primary aim of the present study was to investigate the effects of three torsion devices on body rotations during the golf swing. Two trans-tibial amputees (one right-sided and one left-sided) were analysed using three-dimensional video analysis at address (ADR), the top of the backswing (TBS) and at the end of the follow-through (EFT). The participants played shots with a 3-wood under three different prosthetic conditions (two with a torsion device set to different stiffness values, and one with no torsion device). The results showed that the torsion device served to improve the hip and shoulder rotations of the left-side amputee without increasing perceived stress at the stump. The torsion device had minimal effect on the hip and shoulder rotations of the right-side amputee, although perceived stress was reduced. The difference in results between the right-sided and left-sided amputees was due to the different requirements of each foot during the golf swing. The main problem faced by the right-side amputee was a loss of the sagittal plane movement of ankle joint plantarflexion at EFT, rather than the transverse plane movement.

2020 ◽  
Author(s):  
Peyman Bakhshayesh ◽  
Ugwunna Ihediwa ◽  
Sukha Sandher ◽  
Alexandros Vris ◽  
Nima Heidari ◽  
...  

Abstract Introduction: Rotational deformities following IM nailing of tibia has a reported incidence of as high as 20%. Common techniques to measure deformities following IM nailing of tibia are either based on clinical assessment, plain X-rays or CT-scan comparing the treated leg with the uninjured contralateral side. All these techniques are based on examiners manual calculation inherently subject to bias. Following our previous rigorous motion analysis and symmetry studies on hemi pelvises, femurs and orthopaedic implants, we aimed to introduce a novel fully digital technique to measure rotational deformities in the lower legs.Material and Methods: Following formal institutional approval from the Imperial College, CT images of 10 pairs of human lower legs were retrieved. Images were anonymized and uploaded to a research server. Three dimensional CT images of the lower legs were bilaterally reconstructed. The mirrored images of the left side were merged with the right side proximally as stationary and distally as moving objects. Discrepancies in translation and rotation were automatically calculated.Results: Our study population had a mean age of 54 ± 20 years. There were six males and four females. We observed a greater variation in translation (mm) of Centre of Mass (COM) in sagittal plane (CI: -2.959--.292) which was also presented as rotational difference alongside the antero-posterior direction or Y axis (CI: .370-1.035). In other word the right lower legs in our study were more likely to be in varus compared to the left side. However, there were no statistically significant differences in coronal or axial planes.Conclusion: Using our proposed fully digital technique we found that lower legs of the human adults were symmetrical in axial and coronal plane. We found sagittal plane differences which need further addressing in future using bigger sample size. Our novel recommended technique is fully digital and commercially available. This new technique can be useful in clinical practice addressing rotational deformities following orthopaedic surgical intervention. This new technique can substitute the previously introduced techniques.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haeun Yum ◽  
Hyang Kim ◽  
Taeyong Lee ◽  
Moon Seok Park ◽  
Seung Yeol Lee

Abstract Background Stationary cycling is commonly used for postoperative rehabilitation of physical disabilities; however, few studies have focused on the three-dimensional (3D) kinematics of rehabilitation. This study aimed to elucidate the three-dimensional lower limb kinematics of people with healthy musculoskeletal function and the effect of sex and age on kinematics using a controlled bicycle configuration. Methods Thirty-one healthy adults participated in the study. The position of the stationary cycle was standardized using the LeMond method by setting the saddle height to 85.5% of the participant’s inseam. The participants maintained a pedaling rate of 10–12 km/h, and the average value of three successive cycles of the right leg was used for analysis. The pelvis, hip, knee, and ankle joint motions during cycling were evaluated in the sagittal, coronal, and transverse planes. Kinematic data were normalized to 0–100% of the cycling cycle. The Kolmogorov-Smirnov test, Mann-Whitney U test, Kruskal-Wallis test, and k-fold cross-validation were used to analyze the data. Results In the sagittal plane, the cycling ranges of motion (ROMs) were 1.6° (pelvis), 43.9° (hip), 75.2° (knee), and 26.9° (ankle). The coronal plane movement was observed in all joints, and the specific ROMs were 6.6° (knee) and 5.8° (ankle). There was significant internal and external rotation of the hip (ROM: 11.6°), knee (ROM: 6.6°), and ankle (ROM: 10.3°) during cycling. There was no difference in kinematic data of the pelvis, hip, knee, and ankle between the sexes (p = 0.12 to 0.95) and between different age groups (p = 0.11 to 0.96) in all anatomical planes. Conclusions The kinematic results support the view that cycling is highly beneficial for comprehensive musculoskeletal rehabilitation. These results might help clinicians set a target of recovery ROM based on healthy and non-elite individuals and issue suitable guidelines to patients.


Author(s):  
James Yang ◽  
Burak Ozsoy

Abstract Sit-to-stand (STS) motion is a key determinant of functional independence for the senior people. This paper extends a predictive dynamics formulation previously reported to predict the assisted STS motion, i.e., the motion with a mechanical assistance, unilateral grab-rail bar which is placed on the right side of the virtual-individuals with a vertical orientation. The formulation is able to predict kinetics and kinematics not only in the sagittal plane, but also in frontal and transverse planes. Two different objective functions are tested: The first one is the dynamic effort and the second one is the dynamic effort plus the difference between right and left side support reaction forces. Results show that sagittal plane kinematics and kinetics are not affected by the introduction of the grab-rail bar, whereas some significant differences are seen in the medial/lateral and anterior/posterior components of kinematics and kinetics. The healthy elderly group places a priority to the stability during an assisted STS task. The placement of the grab-rail bar on the right side results in a significant decrease in the left knee joint torque. Results in this study are consistent with those reported from the literature.


2021 ◽  
Vol 15 (2) ◽  
pp. 9-14
Author(s):  
Eliza Smoła ◽  
Katarzyna Wódka ◽  
Marta A. Bibro ◽  
Agnieszka Jankowicz-Szymańska

<p><b>Introduction: </b>The objective of the study was to assess the flexibility of the hamstring muscles and their relationship with the position of the spine, shoulder and pelvic girdles in individual planes in boys training football. <p><b>Material and methods: </b>The study included 28 boys aged 10-14, training football 3 times a week for at least 2 years. The subjects were divided into two groups: correct bilateral flexibility of the hamstring muscles, bilateral shortening of the hamstring muscles. Body height and weight were measured and BMI was calculated. The three-dimensional position of the trunk was examined using the Zebris pointer ultrasound system. The passive straightleg- raising test was used to assess the flexibility of the hamstring muscles. <p><b>Results: </b>32% of people were diagnosed with the correct length of both hamstring muscles, 57% had shortened muscles in both limbs. Mean values determining the depth of thoracic kyphosis indicated its deepening in each of the groups, however, lower values were recorded in boys with reduced flexibility of the hamstring muscle mass. This group was also characterised by a better balance of the trunk in the sagittal plane. The average depth of lumbar lordosis in both groups was within the normal range. In the frontal plane, in both groups of footballers there was a tendency to lift the left shoulder (more frequent in the group with normal flexibility), the pelvis on the left side and shift the trunk to the right. <p><b>Conclusion: </b>Shortening of the hamstring muscles is common in boys who train football, but no evidence of a relationship between the limited flexibility of these muscles and the position of the trunk was found.


Author(s):  
James R. Jastifer ◽  
Peter A. Gustafson ◽  
Robert R. Gorman

Background: The position, axis, and control of each lower extremity joint intimately affects adjacent joint function as well as whole limb performance. There is little describing the biomechanics of subtalar arthrodesis and none describing the effect that subtalar arthrodesis position has on ankle biomechanics. The purpose of the current study is to establish this effect on sagittal plane ankle biomechanics. Methods: A study was performed utilizing a three-dimensional, validated, computational model of the lower extremity. A subtalar arthrodesis was simulated from 20 degrees of varus to 20 degrees of valgus. For each of these subtalar arthrodesis positions, the ankle dorsiflexor and plantarflexor muscles’ fiber force, moment arm, and moments were calculated throughout a physiologic range of motion. Results: Throughout ankle range of motion, plantarflexion and dorsiflexion strength varies with subtalar arthrodesis position. When the ankle joint is in neutral position, plantarflexion strength is maximized in 10 degrees of subtalar valgus and strength varies by a maximum of 2.6% from the peak 221 Nm. In a similar manner, with the ankle joint in neutral position, dorsiflexion strength is maximized with a subtalar joint arthrodesis in 5 degrees of valgus and strength varies by a maximum of 7.5% from the peak 46.8 Nm. The change in strength is due to affected muscle fiber force generating capacities and muscle moment arms. Conclusion: The clinical significance of this study is that subtalar arthrodesis in a position of 5–10 degrees subtalar valgus has biomechanical advantage. This supports previous clinical outcome studies and offers biomechanical rationale for their generally favorable outcomes.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012013
Author(s):  
D K Ngoc ◽  
A F Salleh ◽  
M S Salim ◽  
N Omar ◽  
K S Basarrudin ◽  
...  

Abstract This study investigated the effect of carrying unstable load on thoracic kinematics while walking on a curved path. Three-dimensional spinal kinematics were defined as the rotations between thoracic and the Virtual laboratory coordinate system (Tho/Virtual lab) which consisted of lateral bending (LB), flexion/extension (FE) and axial rotation (AR) in the frontal plane, sagittal plane and transverse plane, respectively. Eight healthy young adults (4 males and 4 females) performed loads carrying and walking on one meter radius curved path. Spinal kinematics was determined at the left leg heel strike and just before the right toe off during the curved path walking. As a result, a significant main effect of load intensity was found only on FE of (Tho/Virtual lab) at both left leg heel strike and right leg toe off. The study concluded that an increase in the load intensity of unstable load from 10% of body weight likely to generate more thorax extension.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9329
Author(s):  
Xin Fang ◽  
Zhongli Jiang

Understanding characteristics of torso motion and arm swing of older adults is important. A comprehensive database of three-dimensional thoracic and pelvic kinematics and arm swing maximum velocity of older adults during overground walking is still lacking. Moreover, the relationships between these variables are not fully understood. Therefore, we investigated age and gender effects of three-dimensional thoracic and pelvic ranges of motion and arm swing maximum velocity in 113 healthy old adults (aged 60–89 years) in a 2-min walk test using APDM Movement Monitoring inertial sensor system by two-way ANOVA, and post hoc Bonferroni correction was applied for multiple comparisons between age groups. A paired t-test was used to study the side preference of arm swing maximum velocity. The relationships between variables were investigated via multiple linear regression models. In general, thoracic and pelvic motions showed reduced amplitude with aging. Gait speed, pelvis coronal plane motion and arm swing maximum velocity significantly declined with age. Only the pelvic sagittal plane motion showed a gender main effect. Coronal plane motions of the thorax and pelvis were closely associated, as were sagittal plane motions. Thoracic coronal plane motion was the significant variable influencing pelvic transverse plane motion and vice versa. Gait speed, pelvic coronal and transverse plane motions and thorax sagittal plane motion were significant independent variables that influenced dominant arm maximum velocity. A larger maximum velocity was seen in the left arm. This investigation is valuable for better understanding of gait phenomena and will contribute to identification of gait dysfunction and development of rehabilitation measures.


2019 ◽  
Author(s):  
David Haberthür ◽  
Eveline Yao ◽  
Sébastien F. Barré ◽  
Tiziana P. Cremona ◽  
Stefan A. Tschanz ◽  
...  

AbstractPulmonary acini represent the functional gas-exchanging units of the lung. Due to technical limitations, individual acini cannot be identified on microscopic lung sections. To overcome these limitations, we imaged the right lower lobes of instillation-fixed rat lungs from postnatal days P4, P10, P21, and P60 at the TOMCAT beamline of the Swiss Light Source synchrotron facility at a voxel size of l.48μm. Individual acini were segmented from the three-dimensional data by closing the airways at the transition from conducting to gas exchanging airways. For a subset of acini (N=268), we followed the acinar development by stereologically assessing their volume and their number of alveoli. We found that the mean volume of the acini increases 23 times during the observed timeframe. The coefficients of variation dropped from 1.26 to 0.49 and the difference between the mean volumes of the fraction of the 20 % smallest to the 20 % largest acini decreased from a factor of 27.26 (day 4) to a factor of 4.07 (day 60), i.e. shows a smaller dispersion at later time points. The acinar volumes show a very large variation early in lung development and homogenize during maturation of the lung by reducing their size distribution by a factor of 7 until adulthood. The homogenization of the acinar sizes hints at an optimization of the gas-exchange region in the lungs of adult animals and that acini of different size are not evenly distributed in the lungs. This likely leads to more homogeneous ventilation at later stages in lung development.


Author(s):  
Yue Li ◽  
Wei Han ◽  
Qingyang Chen ◽  
Yong Zhang

To adapt the autonomous level of agents in current, and to perform the advantages of multi-agent in air combat, the form of manned/unmanned aircraft cooperative system has gradually become a hot topic. To solve the issue of three-dimensional (3D) real-time obstacle avoidance, the 3D maneuvering obstacle model is established firstly based on the traditional velocity obstacle method. Then the flight mode is selected and the optimal obstacle avoidance plane is determined by setting the Right-of-way rules when the system encountering obstacles. Finally, the difference of obstacle avoidance plane, the feasibility of avoiding maneuvering obstacle and the effectiveness of obstacle avoidance of cooperative system are verified by several flight simulations. The results show that the proposed method can realize the avoidance of 3D maneuvering obstacle for manned/unmanned aircraft cooperative system safely and efficiently.


2020 ◽  
Vol 10 (4) ◽  
pp. 913-917
Author(s):  
Zegang Wang

The purpose of this study is to explore the influence of different movement modes on the geometrical morphology of carpal bones. In this study, Computed Tomography (CT) imaging is used for measurement and analysis. The results show that the changes of wrist bone volume of athletes are not significant compared with that of non-athletes, and the changes of bone density of the wrist bone are more obvious under the motion stress stimulation. According to results of CT imaging measurement and calculation, the average CT values of triangular bone, trapezoid bone, capitate bone and pisiform bone in the left hand and hamate bone in the right hand of the athlete are greater than that of the non-athlete, and the difference is statistically significant. Therefore, CT imaging technology can help to reconstruct the three-dimensional image of the carpal bone and deeply understand the geometric shape of the carpal bone of athletes.


Sign in / Sign up

Export Citation Format

Share Document