The Role and Mechanisms of Action of Catechins in Neurodegenerative Diseases

Author(s):  
Gülşen Özduran ◽  
Eda Becer ◽  
Hafize Seda Vatansever
2020 ◽  
Vol 8 (4) ◽  
pp. 490 ◽  
Author(s):  
Mark Obrenovich ◽  
Bushra Siddiqui ◽  
Benjamin McCloskey ◽  
V. Prakash Reddy

It has been well established that a vegetarian and polyphenol-rich diet, including fruits, vegetables, teas, juices, wine, indigestible fiber and whole grains, provide health-promoting phytochemicals and phytonutrients that are beneficial for the heart and brain. What is not well-characterized is the affect these foods have when co-metabolized within our dynamic gut and its colonizing flora. The concept of a heart shunt within the microbiota-gut-brain axis underscores the close association between brain and heart health and the so-called “French paradox” offers clues for understanding neurodegenerative and cerebrovascular diseases. Moreover, oxidation-redox reactions and redox properties of so-called brain and heart-protective foods are underappreciated as to their enhanced or deleterious mechanisms of action. Focusing on prodromal stages, and common mechanisms underlying heart, cerebrovascular and neurodegenerative diseases, we may unmask and understanding the means to better treat these related diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Stanley C. C. Chik ◽  
Terry C. T. Or ◽  
D. Luo ◽  
Cindy L. H. Yang ◽  
Allan S. Y. Lau

Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 576 ◽  
Author(s):  
Lea Pogačnik ◽  
Ajda Ota ◽  
Nataša Poklar Ulrih

Neurodegenerative diseases, namely Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis, Huntington’s disease, and multiple sclerosis are becoming one of the main health concerns due to the increasing aging of the world’s population. These diseases often share the same biological mechanisms, including neuroinflammation, oxidative stress, and/or protein fibrillation. Recently, there have been many studies published pointing out the possibilities to reduce and postpone the clinical manifestation of these deadly diseases through lifelong consumption of some crucial dietary substances, among which phytochemicals (e.g., polyphenols) and endogenous substances (e.g., acetyl-L-carnitine, coenzyme Q10, n-3 poysaturated fatty acids) showed the most promising results. Another important issue that has been pointed out recently is the availability of these substances to the central nervous system, where they have to be present in high enough concentrations in order to exhibit their neuroprotective properties. As so, such the aim of this review is to summarize the recent findings regarding neuroprotective substances, their mechanisms of action, as well as to point out therapeutic considerations, including their bioavailability and safety for humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Li Wang ◽  
Chao-Chao Yu ◽  
Xin-Yuan Liu ◽  
Xiao-Ni Deng ◽  
Qing Tian ◽  
...  

Microglia-mediated neuroinflammation is one of the most remarkable hallmarks of neurodegenerative diseases (NDDs), including AD, PD, and ALS. Accumulating evidence indicates that microglia play both neuroprotective and detrimental roles in the onset and progression of NDDs. Yet, the specific mechanisms of action surrounding microglia are not clear. Modulation of microglia function and phenotypes appears to be a potential strategy to reverse NDDs. Until recently, research into the epigenetic mechanisms of diseases has been gradually developed, making it possible to elucidate the molecular mechanisms underlying the epigenetic regulation of microglia in NDDs. This review highlights the function and phenotypes of microglia, elucidates the relationship between microglia, epigenetic modifications, and NDDs, as well as the possible mechanisms underlying the epigenetic modulation of microglia in NDDs with a focus on potential intervention strategies.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


2003 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Stephen N. Haynes ◽  
Andrew E. Williams

Summary: We review the rationale for behavioral clinical case formulations and emphasize the role of the functional analysis in the design of individualized treatments. Standardized treatments may not be optimally effective for clients who have multiple behavior problems. These problems can affect each other in complex ways and each behavior problem can be influenced by multiple, interacting causal variables. The mechanisms of action of standardized treatments may not always address the most important causal variables for a client's behavior problems. The functional analysis integrates judgments about the client's behavior problems, important causal variables, and functional relations among variables. The functional analysis aids treatment decisions by helping the clinician estimate the relative magnitude of effect of each causal variable on the client's behavior problems, so that the most effective treatments can be selected. The parameters of, and issues associated with, a functional analysis and Functional Analytic Clinical Case Models (FACCM) are illustrated with a clinical case. The task of selecting the best treatment for a client is complicated because treatments differ in their level of specificity and have unequally weighted mechanisms of action. Further, a treatment's mechanism of action is often unknown.


Author(s):  
Joe L. Martinez ◽  
Patricia H. Janak ◽  
Susan B. Weinberger ◽  
Gery Schulteis

2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
T Frank ◽  
K Meuer ◽  
C Pitzer ◽  
J Schulz ◽  
M Bähr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document