A Thermo-Hydro-Mechanics Bidirectional Coupling Mathematical Model for Drying of Biological Porous Medium

2015 ◽  
Vol 33 (4) ◽  
pp. 420-428 ◽  
Author(s):  
T. Lu ◽  
H. L. Wang ◽  
P. X. Jiang
2018 ◽  
Vol 769 ◽  
pp. 329-335
Author(s):  
Andrey Petrov ◽  
Leonid A. Igumnov

The problem of the effect of a normal harmonic force on a porous beam in a 3D formulation is solved using the boundary-element method. A homogeneous fully saturated elastic porous medium is described using Biot’s mathematical model. The effect of the porosity and permeability parameters on the deflection of the beam and the distribution of pore pressure over the beam thickness is investigated. The comparison of the boundary-element solution with a 2D numerical-analytical one is given.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 185 ◽  
Author(s):  
Zhenzhen Jia ◽  
Qing Ye ◽  
Haizhen Wang ◽  
He Li ◽  
Shiliang Shi

Porous medium burners are characterized by high efficiency and good stability. In this study, a new burner was proposed based on the combustion mechanism of the methane-air mixture in the porous medium and the preheating effect. The new burner is a two-section and double-deck porous medium with gas inlets at both ends. A mathematical model for the gas mixture combustion in the porous medium was established. The combustion performance of the burner was simulated under different equivalence ratios and inlet velocities of premixed gas. The methane combustion degree, as well as the temperature and pressure distribution, was estimated. In addition, the concentrations of emissions of NOx for different equivalence ratios were investigated. The results show that the new burner can not only realize sufficient combustion but also save energy. Furthermore, the emission concentration of NOx is very low. This study provides new insights into the industrial development and application of porous medium combustion devices.


2001 ◽  
Vol 12 (5) ◽  
pp. 557-569 ◽  
Author(s):  
J. CHADAM ◽  
P. ORTOLEVA ◽  
Y. QIN ◽  
R. STAMICAR

The shape stability of the reaction interface for reactive flow in a porous medium is investigated. Previous work showed that the Reaction-Infiltration Instability could cause the reaction zone to lose stability when the Peclet number exceeded a critical value. The new feature of this study is to include a velocity-dependent hydrodynamic dispersion. A mathematical model for this phenomenon is given in the form of a moving free-boundary problem. The spectrum of the linearized problem is obtained, and the related analysis and numerical calculations show that the onset of the instability is not eliminated by the new dispersive terms. The details of analysis show that the instability is reduced especially by the transverse dispersion.


2017 ◽  
Vol 52 (2) ◽  
pp. 299-308 ◽  
Author(s):  
Zh. M. Makhmudov ◽  
U. Zh. Saidullaev ◽  
B. Kh. Khuzhayorov

2020 ◽  
pp. 86-95 ◽  
Author(s):  
O. V. Ageikina ◽  
V. V. Vorontsov ◽  
R. R. Sufyanov

The relevance of the research processes filtration consolidation due to the place of water-saturated soils in various design solutions related to the exploration, production and transportation of hydrocarbons. It should be noted that the diversity of soils led to the emergence of a wide range of mathematical models, obtained on the basis of generalization of experimental data and various assumptions to simplify engineering calculations. The article presents the results of theoretical and experimental studies of the mathematical model of the consolidation process of a water-saturated porous medium. This model is based on simplifying assumptions that are different from those adopted in well-known solutions. A fundamental approach to the formation of the model was developed on the basis of the kinetic representations of chemical reactions used in solving the environmental problems of epoxidation reactions of olefins. We determined the parameters of the mathematical model of the consolidation process of the saturated porous medium of clayey soil and confirmed its adequacy by the research results. In addition, we established the parameters of the field of non-equilibrium filtration, reducing the nonexistent ability of water-saturated soils.


Sign in / Sign up

Export Citation Format

Share Document