scholarly journals Brazilian red propolis extract enhances expression of antioxidant enzyme genes in vitro and in vivo

2020 ◽  
Vol 84 (9) ◽  
pp. 1820-1830 ◽  
Author(s):  
Sho Hotta ◽  
Satoshi Uchiyama ◽  
Kenji Ichihara
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Ira Widjiastuti ◽  
Widya Saraswati ◽  
Annisa Rahma

Background: Inflammation of the pulp can lead to elicit pain. Pain in inflammation is induced by the cyclooxygenase-2 enzyme (COX-2) which induces prostaglandin E2 (PGE2) resulting in pain. Pain in the pulp can be relieved by eugenol. In its application, eugenol is toxic to pulp fibroblasts. Due to the side effect, it is worth considering other biocompatible materials with minimal side effects, such as propolis. Flavonoids and phenolic acids that contained in propolis can inhibit COX-2. Therefore, an analysis outlined in the literature review is needed to examine the results of research related to the role of propolis as pulp pain relief by inhibiting COX-2 expression. Purpose: To analyze the role of propolis in pulp pain by inhibiting COX-2 expression. Reviews: Propolis extract that extracted by ethanol, water, and hydroalcohol has pain relief properties in the pulp by inhibiting COX-2 by directly binding to the COX-2 receptors and by reducing the production of proinflammatory cytokines which are COX-2 inducers, proven through in vivo, in vitro, and in silico studies in various target cell organs. Conclusion: Propolis extract has high prospect as inflammatory pain inhibitor in the pulp by inhibit COX-2 expression.


2018 ◽  
Vol 9 (4) ◽  
pp. 2051-2069 ◽  
Author(s):  
Faiza Mejri ◽  
Slimen Selmi ◽  
Alice Martins ◽  
Haifa benkhoud ◽  
Tarek Baati ◽  
...  

Broad bean pods have been proven to be a functional food with promising in vitro and in vivo biological activities.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Amol L. Shirfule ◽  
Venkatesh Racharla ◽  
S. S. Y. H. Qadri ◽  
Arjun L. Khandare

Gokshuradi Yog (GY)is a polyherbal ayurvedic formulation used traditionally for several decades in India for the treatment of urolithiasis. The aim of the present study was to determine the underlying mechanism ofGYaction in the management of calcium oxalate urolithiasis. The effect ofGokshuradi polyherbal aqueous extracts(GPAEs) was studied on various biochemical parameters involved in calcium oxalate formation by employingin vitroandin vivomethods.GPAEexhibited significant antioxidant activity against 1, 1-diphenyl-2-picrylhydrazyl free radical and inhibited lipid peroxidation in thein vitroexperiments. The rat model of urolithiasis induced by 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC) in water caused polyuria, weight loss, impairment of renal function, and oxidative stress and decreased antioxidant enzyme activities in untreated control groups. However,GPAE-(25, 50, and 100 mg/kg) treated groups caused diuresis accompanied by a saluretic effect and revealed significant increase in antioxidant enzyme activities along with decreased oxalate synthesizing biochemical parameters at higher doses. This study revealed the antiurolithic effect ofGPAEmediated possibly through inhibiting biochemical parameters involved in calcium oxalate formation, along with its diuretic and antioxidant effects, hence supporting its use in the treatment of calcium oxalate urolithiasis.


2019 ◽  
Vol 39 (9) ◽  
pp. 744-756
Author(s):  
Jardel B. Silva ◽  
Kaliane A.R. Paiva ◽  
Kizzy M.F.M. Costa ◽  
Geysa A. Viana ◽  
Hélio N. Araújo Júnior ◽  
...  

ABSTRACT: The objective of this study was to evaluate the hepatoprotective effect of the honey bee Apis mellifera ethanolic extract of the red propolis, obtained in four municipalities of the Rio Grande do Norte semi-arid region, through an in vitro evaluation of the antineoplastic potential in human hepatic carcinoma (HepG2) and normal cell lines (L929), and from the comet assay in hepatic cell lines (ZF-L hepatocytes) to evaluate the genoprotective potential of the extract. The hepatoprotective effect was also evaluated in vivo by the induction of chronic experimental hepatic lesions in rodents (Rattus norvegicus Berkenhout, 1769), Wistar line, by intraperitoneal administration of thioacetamide (TAA) at the dose of 0.2g/kg. The animals were distributed in the following experimental groups: G1 (control), G2 (treated with 500mg/kg ethanolic extract of propolis), G3 (treated with 500mg/kg of ethanolic extract and TAA) and G4 (treated with TAA). All rats were submitted to serum biochemical, macroscopic, histological and stereological biochemical exams of the liver. It was verified the genoprotective effect of red propolis since the mean damages promoted to DNA in cells tested with the extract were significantly lower than the mean of the positive control damage (hydrogen peroxide). The red propolis extract did not present cytotoxic activity to the tumor cells of human liver cancer, as well as to normal ones. The absence of cytotoxicity in normal cells may indicate safety in the use of the propolis extract. The results of the serum biochemical evaluation showed that the serum levels of the aminotransferase enzymes (AST) did not differ significantly between G1, G2 and G3 when compared to each other. G4 showed significant increase in levels compared to the other groups, indicating that the administration of the extract did not cause liver toxicity, as well as exerted hepatoprotective effect against the hepatic damage induced by TAA. The G3 and G4 animals developed cirrhosis, but in G3 the livers were characterized by the presence of small regenerative nodules and level with the surface of the organ, whereas in G4 the livers showed large regenerative nodules. The livers of the G1 and G2 animals presented normal histological appearance, whereas the livers of the G3 animals showed regenerative nodules surrounded by thin septa of connective tissue, and in G4 the regenerative nodules were surrounded by thick septa fibrous connective tissue. The analysis of the hepatic tissues by means of stereology showed that there was no statistical difference between the percentage of hepatocytes, sinusoids, and collagens in G1 and G2. In G3 the percentage of hepatocytes, sinusoids, and collagen did not differ significantly from the other groups. It was concluded that the ethanolic extract of the red propolis exerted a hepatoprotective effect, because it promoted in vitro reduction of the damage to the DNA of liver cells, antineoplastic activity in human hepatocellular carcinoma cell line (HepG2) and did not exert cytotoxic effect in normal cells or was able to reduce liver enzyme activity and the severity of cirrhosis induced by TAA in vivo.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243197
Author(s):  
Amanda Pohlmann Bonfim ◽  
Karina Mayumi Sakita ◽  
Daniella Renata Faria ◽  
Glaucia Sayuri Arita ◽  
Franciele Abigail Vilugron Rodrigues Vendramini ◽  
...  

Vulvovaginal candidiasis (VVC) is a common vaginitis that affects women, especially in childbearing age, caused by Candida albicans in almost 80% of cases. Considering the limited drug arsenal available and the increasing fungal resistance profile, the search for new therapeutic sources with low toxicity and easy administration should be supported. Propolis has been used as a traditional medicine for multiple diseases, considering its particular composition and pharmaceutical properties that permits its wide applicability; it has also emerged as a potential antifungal agent. Thus, this study performed an in vitro and in vivo investigation into the efficacy of a new mucoadhesive thermoresponsive platform for propolis delivery (MTS-PRPe) in a preclinical murine model of VVC treatment caused by C. albicans. The methodologies involved chemical analysis, an assessment of the rheological and mucoadhesive properties of propolis formulations, in vitro and in vivo antifungal evaluations, histological evaluations and electron microscopy of the vaginal mucosa. The results demonstrated the antifungal activity of propolis extract and MTS-PRP against the standard strain and a fluconazole-resistant clinical isolate of C. albicans, in both in vitro and in vivo assays. These results were similar and even better, depending on the propolis concentration, when compared to nystatin. Thus, the formulation containing propolis exhibited good performance against C. albicans in a vulvovaginal candidiasis experimental model, representing a promising opportunity for the treatment of this infection.


2021 ◽  
Vol 19 (1) ◽  
pp. 864-874
Author(s):  
Nael Abutaha ◽  
Mohammed AL-Zharani ◽  
Amal Alotaibi ◽  
Mary Anne W. Cordero ◽  
Asmatanzeem Bepari ◽  
...  

Abstract Numerous compounds derived from natural sources such as microbes, plants, and insects have proven to be safe, efficacious, and cost-effective therapeutics for human diseases. This study examined the bioactivities of propolis, a structural sealant and antibacterial/antifungal agent produced by honey bees. Chinese propolis was extracted in methanol or hexane. Propolis significantly reduced the numbers of viable cancer cells when applied as a methanol extract (IC50 values in μg/mL for the indicated cell line: MDA-MB-231, 74.12; LoVo, 74.12; HepG2, 77.74; MCF7, 95.10; A549, 114.84) or a hexane extract (MDA-MB-231, 52.11; LoVo, 45.9; HepG2, 52.11; MCF7, 78.01; A549, 67.90). Hexane extract also induced apoptosis of HepG2 cells according to activated caspase-3/7 expression assays (17.6 ± 2.9% at 150 μg/mL and 89.2 ± 1.9% at 300 μg/mL vs 3.4 ± 0.4% in vehicle control), suppressed the growth of Candida albicans and multiple multidrug-resistant and nonresistant Gram-positive bacteria, and inhibited croton oil-induced skin inflammation when applied as topical treatment. GC-MS identified hexadecanoic acid methyl ester as a major constituent (33.6%). Propolis hexane extract has potential anticancer, antimicrobial, and anti-inflammatory activities.


2002 ◽  
Vol 57 (3-4) ◽  
pp. 379-385 ◽  
Author(s):  
Aiman S. El-Khatib ◽  
Azza M. Agha ◽  
Laila G. Mahran ◽  
Mohamed T. Khayyal

Propolis has been extensively used in folk medicine for the management of a wide spectrum of disorders. In a previous study, we demonstrated the protective effect of the aqueous propolis extract (APE) against the injurious effects of carbon tetrachloride (CCl4) on hepatocytes in vitro. The present investigation was carried out to show whether the hepatoprotective effect of the extract could also be manifested in vivo. Rats were given APE orally for 14 consecutive days, before being subjected to a single intraperitoneal injection of CCl4. One day after the CCl4 injection, the animals were sacrificed, hepatocytes were isolated and liver homogenates were prepared for the assessment of liver injury. In isolated hepatocytes, APE afforded protection against CCl4-induced injury as manifested by a decrease in the leakage of the cytosolic enzyme lactate dehydrogenase (LDH), decreased generation of lipid peroxide and maintenance of cellular reduced glutathione (GSH) content. In principle, similar findings were observed in liver homogenates. The present findings show that APE has in vivo hepatoprotective potential which could be attributed at least in part to the maintenance of cellular GSH content. The latter effect seems to play an important role in conserving the integrity of biomembranes as it was associated with a decrease in lipid peroxidation and reduced leakage of cytosolic LDH


Sign in / Sign up

Export Citation Format

Share Document