Influencing factors for nutrient removal from piggery digestate by coupling microalgae and electric field

2022 ◽  
pp. 1-27
Author(s):  
Longzao Luo ◽  
Xiaoai Lin ◽  
Miao Li ◽  
Xing Liao ◽  
Bangxi Zhang ◽  
...  
2008 ◽  
Vol 368-372 ◽  
pp. 831-833
Author(s):  
Chang Hong Dai ◽  
Zu Wei Song ◽  
Ru Zhao

A new heating apparatus for synthesizing SiC whiskers was introduced. SiC whiskers were synthesized in electric field furnace with carbon black and SiO2 powders as raw materials and some influencing factors were discussed. SiC whiskers with diameter of 0.1-0.4μm, length of 5-70μm and average purity of 99.6% were acquired at lower temperatures of 1200-1400°C for a shorter holding time of 2-4h. The results showed that the high voltage field has great catalysis action on synthetic of SiC whiskers by reducing activation energy and enhancing reaction speed.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

Sign in / Sign up

Export Citation Format

Share Document